

 Codex SDK

 v0.6.0

 [image: Logo]

 Table of contents

 	Introduction

 	README

 	Getting Started

 	Guides

 	Architecture Guide

 	App-server Transport (JSON-RPC over stdio)

 	Reference

 	LICENSE

 	API Reference

 	Examples and Usage Patterns

 	Changelog

 	Changelog

 	
 Modules

 	Codex.Agent

 	Codex.AgentRunner

 	Codex.AppServer

 	Codex.AppServer.Mcp

 	Codex.AppServer.V1

 	Codex.Events.AccountLoginCompleted

 	Codex.Events.AccountRateLimitsUpdated

 	Codex.Events.AccountUpdated

 	Codex.Events.AppServerNotification

 	Codex.Events.CollabAgentInteractionBegin

 	Codex.Events.CollabAgentInteractionEnd

 	Codex.Events.CollabAgentSpawnBegin

 	Codex.Events.CollabAgentSpawnEnd

 	Codex.Events.CollabCloseBegin

 	Codex.Events.CollabCloseEnd

 	Codex.Events.CollabWaitingBegin

 	Codex.Events.CollabWaitingEnd

 	Codex.Events.CommandOutputDelta

 	Codex.Events.ConfigWarning

 	Codex.Events.ContextCompacted

 	Codex.Events.DeprecationNotice

 	Codex.Events.ElicitationRequest

 	Codex.Events.EnteredReviewMode

 	Codex.Events.Error

 	Codex.Events.ExitedReviewMode

 	Codex.Events.FileChangeOutputDelta

 	Codex.Events.ItemAgentMessageDelta

 	Codex.Events.ItemCompleted

 	Codex.Events.ItemInputTextDelta

 	Codex.Events.ItemStarted

 	Codex.Events.ItemUpdated

 	Codex.Events.McpServerOauthLoginCompleted

 	Codex.Events.McpStartupComplete

 	Codex.Events.McpStartupUpdate

 	Codex.Events.McpToolCallProgress

 	Codex.Events.RawResponseItemCompleted

 	Codex.Events.ReasoningDelta

 	Codex.Events.ReasoningSummaryDelta

 	Codex.Events.ReasoningSummaryPartAdded

 	Codex.Events.RequestUserInput

 	Codex.Events.SessionConfigured

 	Codex.Events.ShutdownComplete

 	Codex.Events.TerminalInteraction

 	Codex.Events.ThreadRolledBack

 	Codex.Events.ThreadStarted

 	Codex.Events.ThreadTokenUsageUpdated

 	Codex.Events.ToolCallCompleted

 	Codex.Events.ToolCallRequested

 	Codex.Events.TurnAborted

 	Codex.Events.TurnCompaction

 	Codex.Events.TurnCompleted

 	Codex.Events.TurnContinuation

 	Codex.Events.TurnDiffUpdated

 	Codex.Events.TurnFailed

 	Codex.Events.TurnPlanUpdated

 	Codex.Events.TurnStarted

 	Codex.Events.UndoCompleted

 	Codex.Events.UndoStarted

 	Codex.Events.Warning

 	Codex.Events.WindowsWorldWritableWarning

 	Codex.FileSearch

 	Codex.Files.Attachment

 	Codex.FunctionTool

 	Codex.Guardrail

 	Codex.HTTPClient

 	Codex.HTTPClient.Mock

 	Codex.HTTPClient.Req

 	Codex.Handoff

 	Codex.Handoff.InputData

 	Codex.Items.AgentMessage

 	Codex.Items.CommandExecution

 	Codex.Items.Compaction

 	Codex.Items.Error

 	Codex.Items.FileChange

 	Codex.Items.GhostSnapshot

 	Codex.Items.ImageView

 	Codex.Items.McpToolCall

 	Codex.Items.RawResponseItem

 	Codex.Items.Reasoning

 	Codex.Items.ReviewMode

 	Codex.Items.TodoList

 	Codex.Items.UserMessage

 	Codex.Items.WebSearch

 	Codex.ModelSettings

 	Codex.Models

 	Codex.Protocol.ByteRange

 	Codex.Protocol.CollaborationMode

 	Codex.Protocol.ConfigTypes

 	Codex.Protocol.Elicitation

 	Codex.Protocol.Elicitation.Request

 	Codex.Protocol.Ops

 	Codex.Protocol.RateLimit

 	Codex.Protocol.RateLimit.CreditsSnapshot

 	Codex.Protocol.RateLimit.Snapshot

 	Codex.Protocol.RateLimit.Window

 	Codex.Protocol.RequestUserInput

 	Codex.Protocol.RequestUserInput.Answer

 	Codex.Protocol.RequestUserInput.Option

 	Codex.Protocol.RequestUserInput.Question

 	Codex.Protocol.RequestUserInput.Response

 	Codex.Protocol.TextElement

 	Codex.RateLimit

 	Codex.Realtime

 	Codex.Retry

 	Codex.RunConfig

 	Codex.RunResultStreaming

 	Codex.Session

 	Codex.Session.Memory

 	Codex.Sessions

 	Codex.StreamEvent.AgentUpdated

 	Codex.StreamEvent.GuardrailResult

 	Codex.StreamEvent.RawResponses

 	Codex.StreamEvent.RunItem

 	Codex.StreamEvent.ToolApproval

 	Codex.ToolGuardrail

 	Codex.ToolOutput

 	Codex.ToolOutput.FileContent

 	Codex.ToolOutput.Image

 	Codex.ToolOutput.Text

 	Codex.Tools.ApplyPatchTool

 	Codex.Tools.CodeInterpreterTool

 	Codex.Tools.ComputerTool

 	Codex.Tools.FileSearchTool

 	Codex.Tools.Handle

 	Codex.Tools.HostedMcpTool

 	Codex.Tools.ImageGenerationTool

 	Codex.Tools.ShellCommandTool

 	Codex.Tools.ShellTool

 	Codex.Tools.VectorStoreSearchTool

 	Codex.Tools.ViewImageTool

 	Codex.Tools.WebSearchTool

 	Codex.Tools.WriteStdinTool

 	Codex.Transport

 	Codex.Voice

 	CodexSdk

 	Public API

 	Codex

 	Codex.Options

 	Codex.Thread

 	Codex.Thread.Options

 	Codex.Turn.Result

 	Execution

 	Codex.Events

 	Codex.Exec

 	Codex.Items

 	Codex.Telemetry

 	Files

 	Codex.Files

 	Codex.Files.Registry

 	Codex.OutputSchemaFile

 	Approvals

 	Codex.ApprovalError

 	Codex.Approvals

 	Codex.Approvals.Hook

 	Codex.Approvals.Registry

 	Codex.Approvals.StaticPolicy

 	Tooling

 	Codex.MCP.Client

 	Codex.MCP.Config

 	Codex.MCP.OAuth

 	Codex.MCP.Transport.Stdio

 	Codex.MCP.Transport.StreamableHTTP

 	Codex.Prompts

 	Codex.Skills

 	Codex.Tool

 	Codex.Tools

 	Codex.Tools.Registry

 	Errors

 	Codex.Error

 	Codex.TransportError

 	Exceptions

 	Codex.GuardrailError

 	
 Mix Tasks

 	Tasks

 	mix codex.parity

 	mix codex.verify

Codex.Agent

Defines a reusable agent with instructions, tools, and hooks.

 Summary

 Types

 t()

 Functions

 new(agent)

 Builds a validated %Codex.Agent{} struct.

 Types

 t()

 @type t() :: %Codex.Agent{
 handoff_description: String.t() | nil,
 handoffs: list(),
 hooks: term(),
 input_guardrails: list(),
 instructions: String.t() | nil,
 model: String.t() | nil,
 model_settings: map() | struct() | nil,
 name: String.t() | nil,
 output_guardrails: list(),
 prompt: map() | String.t() | nil,
 reset_tool_choice: boolean(),
 tool_input_guardrails: list(),
 tool_output_guardrails: list(),
 tool_use_behavior:
 :run_llm_again
 | :stop_on_first_tool
 | %{optional(:stop_at_tool_names) => [String.t()]}
 | function()
 | nil,
 tools: list()
}

 Functions

 new(agent)

 @spec new(map() | keyword() | t()) :: {:ok, t()} | {:error, term()}

Builds a validated %Codex.Agent{} struct.

Codex.AgentRunner

Multi-turn runner that orchestrates agent execution over Codex threads.

 Summary

 Functions

 get_handoffs(agent, context \\ %{})

 Resolves and filters handoffs configured on the agent, returning only enabled entries.

 run(thread, input, opts \\ %{})

 run_streamed(thread, input, opts \\ %{})

 Functions

 get_handoffs(agent, context \\ %{})

 @spec get_handoffs(Codex.Agent.t(), map()) :: {:ok, [Codex.Handoff.t()]}

Resolves and filters handoffs configured on the agent, returning only enabled entries.

 run(thread, input, opts \\ %{})

 @spec run(Codex.Thread.t(), String.t() | [map()], map() | keyword()) ::
 {:ok, Codex.Turn.Result.t()} | {:error, term()}

 run_streamed(thread, input, opts \\ %{})

 @spec run_streamed(Codex.Thread.t(), String.t() | [map()], map() | keyword()) ::
 {:ok, Codex.RunResultStreaming.t()} | {:error, term()}

Codex.AppServer

App-server transport for stateful, bidirectional communication with Codex.

 Summary

 Types

 connect_opts()

 connection()

 Functions

 alive?(conn)

 apps_list(conn, opts \\ [])

 Lists available apps/connectors.

 collaboration_mode_list(conn)

 Lists collaboration mode presets (experimental).

 command_exec(conn, command, opts \\ [])

 command_write_stdin(conn, process_id, stdin, opts \\ [])

 Writes stdin to a running command execution session.

 config_batch_write(conn, edits, opts \\ [])

 config_read(conn, opts \\ [])

 config_requirements(conn)

 Reads config requirements enforced by the server (if any).

 config_write(conn, key_path, value, opts \\ [])

 connect(codex_opts, opts \\ [])

 disconnect(conn)

 feedback_upload(conn, opts)

 fuzzy_file_search(conn, query, opts \\ [])

 model_list(conn, opts \\ [])

 respond(conn, id, result)

 review_start(conn, thread_id, target, opts \\ [])

 skills_config_write(conn, path, enabled)

 Writes a skills config entry enabling or disabling a skill by path.

 skills_list(conn, opts \\ [])

 subscribe(conn, opts \\ [])

 thread_archive(conn, thread_id)

 thread_compact(conn, thread_id)

 deprecated

 Returns an unsupported error. The thread/compact API was removed in upstream
codex app-server. Context compaction now happens automatically server-side.

 thread_fork(conn, thread_id, params \\ %{})

 thread_list(conn, opts \\ [])

 thread_loaded_list(conn, opts \\ [])

 thread_read(conn, thread_id, opts \\ [])

 thread_resume(conn, thread_id, params \\ %{})

 thread_rollback(conn, thread_id, num_turns)

 thread_start(conn, params \\ %{})

 turn_interrupt(conn, thread_id, turn_id)

 turn_start(conn, thread_id, input, opts \\ [])

 unsubscribe(conn)

 Types

 connect_opts()

 @type connect_opts() :: [
 init_timeout_ms: pos_integer(),
 client_name: String.t(),
 client_title: String.t(),
 client_version: String.t()
]

 connection()

 @type connection() :: pid()

 Functions

 alive?(conn)

 @spec alive?(connection()) :: boolean()

 apps_list(conn, opts \\ [])

 @spec apps_list(
 connection(),
 keyword()
) :: {:ok, map()} | {:error, term()}

Lists available apps/connectors.

 collaboration_mode_list(conn)

 @spec collaboration_mode_list(connection()) :: {:ok, map()} | {:error, term()}

Lists collaboration mode presets (experimental).

 command_exec(conn, command, opts \\ [])

 @spec command_exec(connection(), [String.t()], keyword()) ::
 {:ok, map()} | {:error, term()}

 command_write_stdin(conn, process_id, stdin, opts \\ [])

 @spec command_write_stdin(connection(), String.t(), String.t(), keyword()) ::
 {:ok, map()} | {:error, term()}

Writes stdin to a running command execution session.

 config_batch_write(conn, edits, opts \\ [])

 @spec config_batch_write(connection(), [map()], keyword()) ::
 {:ok, map()} | {:error, term()}

 config_read(conn, opts \\ [])

 @spec config_read(
 connection(),
 keyword()
) :: {:ok, map()} | {:error, term()}

 config_requirements(conn)

 @spec config_requirements(connection()) :: {:ok, map()} | {:error, term()}

Reads config requirements enforced by the server (if any).

 config_write(conn, key_path, value, opts \\ [])

 @spec config_write(connection(), String.t(), term(), keyword()) ::
 {:ok, map()} | {:error, term()}

 connect(codex_opts, opts \\ [])

 @spec connect(Codex.Options.t(), connect_opts()) ::
 {:ok, connection()} | {:error, term()}

 disconnect(conn)

 @spec disconnect(connection()) :: :ok

 feedback_upload(conn, opts)

 @spec feedback_upload(
 connection(),
 keyword()
) :: {:ok, map()} | {:error, term()}

 fuzzy_file_search(conn, query, opts \\ [])

 @spec fuzzy_file_search(connection(), String.t(), keyword()) ::
 {:ok, map()} | {:error, term()}

 model_list(conn, opts \\ [])

 @spec model_list(
 connection(),
 keyword()
) :: {:ok, map()} | {:error, term()}

 respond(conn, id, result)

 @spec respond(connection(), String.t() | integer(), map()) :: :ok | {:error, term()}

 review_start(conn, thread_id, target, opts \\ [])

 @spec review_start(connection(), String.t(), term(), keyword()) ::
 {:ok, map()} | {:error, term()}

 skills_config_write(conn, path, enabled)

 @spec skills_config_write(connection(), String.t(), boolean()) ::
 {:ok, map()} | {:error, term()}

Writes a skills config entry enabling or disabling a skill by path.

 skills_list(conn, opts \\ [])

 @spec skills_list(
 connection(),
 keyword()
) :: {:ok, map()} | {:error, term()}

 subscribe(conn, opts \\ [])

 @spec subscribe(
 connection(),
 keyword()
) :: :ok | {:error, term()}

 thread_archive(conn, thread_id)

 @spec thread_archive(connection(), String.t()) :: :ok | {:error, term()}

 thread_compact(conn, thread_id)

 This function is deprecated. thread/compact API removed upstream; compaction is now automatic.

 @spec thread_compact(connection(), String.t()) :: {:error, {:unsupported, String.t()}}

Returns an unsupported error. The thread/compact API was removed in upstream
codex app-server. Context compaction now happens automatically server-side.
Deprecation Notice
This function is retained for API compatibility but will always return an error.
Remove calls to this function from your code.

 thread_fork(conn, thread_id, params \\ %{})

 @spec thread_fork(connection(), String.t(), map() | keyword()) ::
 {:ok, map()} | {:error, term()}

 thread_list(conn, opts \\ [])

 @spec thread_list(
 connection(),
 keyword()
) :: {:ok, map()} | {:error, term()}

 thread_loaded_list(conn, opts \\ [])

 @spec thread_loaded_list(
 connection(),
 keyword()
) :: {:ok, map()} | {:error, term()}

 thread_read(conn, thread_id, opts \\ [])

 @spec thread_read(connection(), String.t(), keyword()) ::
 {:ok, map()} | {:error, term()}

 thread_resume(conn, thread_id, params \\ %{})

 @spec thread_resume(connection(), String.t(), map() | keyword()) ::
 {:ok, map()} | {:error, term()}

 thread_rollback(conn, thread_id, num_turns)

 @spec thread_rollback(connection(), String.t(), pos_integer()) ::
 {:ok, map()} | {:error, term()}

 thread_start(conn, params \\ %{})

 @spec thread_start(connection(), map() | keyword()) :: {:ok, map()} | {:error, term()}

 turn_interrupt(conn, thread_id, turn_id)

 @spec turn_interrupt(connection(), String.t(), String.t()) :: :ok | {:error, term()}

 turn_start(conn, thread_id, input, opts \\ [])

 @spec turn_start(connection(), String.t(), String.t() | [map()], keyword()) ::
 {:ok, map()} | {:error, term()}

 unsubscribe(conn)

 @spec unsubscribe(connection()) :: :ok

Codex.AppServer.Mcp

MCP (Model Context Protocol) server management for app-server connections.
This module provides functions to interact with MCP servers configured in
the Codex app-server, including listing server status and handling OAuth
authentication flows.

 Summary

 Types

 connection()

 Functions

 list_server_statuses(conn, opts \\ [])

 Alias for list_servers/2. Returns MCP server status information.

 list_servers(conn, opts \\ [])

 Lists configured MCP servers with their tools, resources, and auth status.

 oauth_login(conn, opts)

 Starts an OAuth login flow for a streamable HTTP MCP server.

 oauth_logout(conn, name, opts \\ [])

 Deletes stored OAuth tokens for a configured MCP server.

 oauth_tokens(conn, name, opts \\ [])

 Loads stored OAuth tokens for a configured MCP server.

 reload(conn)

 Requests MCP servers to reload configuration and refresh cached tools.

 Types

 connection()

 @type connection() :: pid()

 Functions

 list_server_statuses(conn, opts \\ [])

 @spec list_server_statuses(
 connection(),
 keyword()
) :: {:ok, map()} | {:error, term()}

Alias for list_servers/2. Returns MCP server status information.

 list_servers(conn, opts \\ [])

 @spec list_servers(
 connection(),
 keyword()
) :: {:ok, map()} | {:error, term()}

Lists configured MCP servers with their tools, resources, and auth status.
Supports cursor-based pagination via :cursor and :limit options.
Compatibility
This function tries the new mcpServerStatus/list method first. If the server
returns a "method not found" (-32601) or "unknown variant" (-32600) error
(older servers), it falls back to the legacy mcpServers/list method
automatically.

 oauth_login(conn, opts)

 @spec oauth_login(
 connection(),
 keyword()
) :: {:ok, map()} | {:error, term()}

Starts an OAuth login flow for a streamable HTTP MCP server.
OAuth credentials are stored using the configured MCP credentials store. Use
oauth_tokens/3 to load them after login completes.

 oauth_logout(conn, name, opts \\ [])

 @spec oauth_logout(connection(), String.t(), keyword()) :: :ok | {:error, term()}

Deletes stored OAuth tokens for a configured MCP server.
Returns {:error, :server_not_found} if the server is not configured, or
{:error, :missing_url} if the server is not a streamable HTTP server.

 oauth_tokens(conn, name, opts \\ [])

 @spec oauth_tokens(connection(), String.t(), keyword()) ::
 {:ok, Codex.MCP.OAuth.tokens() | nil} | {:error, term()}

Loads stored OAuth tokens for a configured MCP server.
Returns {:error, :server_not_found} if the server is not configured, or
{:error, :missing_url} if the server is not a streamable HTTP server.

 reload(conn)

 @spec reload(connection()) :: {:ok, map()} | {:error, term()}

Requests MCP servers to reload configuration and refresh cached tools.

Codex.AppServer.V1

Legacy v1 app-server endpoints for compatibility with older servers.

 Summary

 Types

 connection()

 Functions

 add_conversation_listener(conn, conversation_id, opts \\ [])

 interrupt_conversation(conn, conversation_id)

 list_conversations(conn, opts \\ [])

 new_conversation(conn, params \\ %{})

 remove_conversation_listener(conn, subscription_id)

 resume_conversation(conn, params \\ %{})

 send_user_message(conn, conversation_id, input)

 send_user_turn(conn, conversation_id, input, opts \\ [])

 Types

 connection()

 @type connection() :: pid()

 Functions

 add_conversation_listener(conn, conversation_id, opts \\ [])

 @spec add_conversation_listener(connection(), String.t(), keyword()) ::
 {:ok, map()} | {:error, term()}

 interrupt_conversation(conn, conversation_id)

 @spec interrupt_conversation(connection(), String.t()) ::
 {:ok, map()} | {:error, term()}

 list_conversations(conn, opts \\ [])

 @spec list_conversations(
 connection(),
 keyword()
) :: {:ok, map()} | {:error, term()}

 new_conversation(conn, params \\ %{})

 @spec new_conversation(connection(), map() | keyword()) ::
 {:ok, map()} | {:error, term()}

 remove_conversation_listener(conn, subscription_id)

 @spec remove_conversation_listener(connection(), String.t()) ::
 {:ok, map()} | {:error, term()}

 resume_conversation(conn, params \\ %{})

 @spec resume_conversation(connection(), map() | keyword()) ::
 {:ok, map()} | {:error, term()}

 send_user_message(conn, conversation_id, input)

 @spec send_user_message(connection(), String.t(), String.t() | [map()]) ::
 {:ok, map()} | {:error, term()}

 send_user_turn(conn, conversation_id, input, opts \\ [])

 @spec send_user_turn(connection(), String.t(), String.t() | [map()], keyword()) ::
 {:ok, map()} | {:error, term()}

Codex.Events.AccountLoginCompleted

Event emitted when account login completes.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.AccountLoginCompleted{
 error: String.t() | nil,
 login_id: String.t() | nil,
 success: boolean()
}

Codex.Events.AccountRateLimitsUpdated

Event emitted when account rate limits are updated.
Contains current rate limit information from the API, including
limits, remaining quota, and reset times.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.AccountRateLimitsUpdated{
 rate_limits: Codex.Protocol.RateLimit.Snapshot.t() | map(),
 thread_id: String.t() | nil,
 turn_id: String.t() | nil
}

Codex.Events.AccountUpdated

Event emitted when account authentication state changes.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.AccountUpdated{auth_mode: String.t() | nil}

Codex.Events.AppServerNotification

Lossless wrapper for an app-server notification that is not yet mapped into a typed event.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.AppServerNotification{method: String.t(), params: map()}

Codex.Events.CollabAgentInteractionBegin

Collab event emitted when an agent interaction starts.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.CollabAgentInteractionBegin{
 call_id: String.t() | nil,
 prompt: String.t() | nil,
 receiver_thread_id: String.t() | nil,
 sender_thread_id: String.t() | nil
}

Codex.Events.CollabAgentInteractionEnd

Collab event emitted when an agent interaction completes.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.CollabAgentInteractionEnd{
 call_id: String.t() | nil,
 prompt: String.t() | nil,
 receiver_thread_id: String.t() | nil,
 sender_thread_id: String.t() | nil,
 status: map() | String.t() | atom() | nil
}

Codex.Events.CollabAgentSpawnBegin

Collab event emitted when an agent spawn starts.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.CollabAgentSpawnBegin{
 call_id: String.t() | nil,
 prompt: String.t() | nil,
 sender_thread_id: String.t() | nil
}

Codex.Events.CollabAgentSpawnEnd

Collab event emitted when an agent spawn completes.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.CollabAgentSpawnEnd{
 call_id: String.t() | nil,
 new_thread_id: String.t() | nil,
 prompt: String.t() | nil,
 sender_thread_id: String.t() | nil,
 status: map() | String.t() | atom() | nil
}

Codex.Events.CollabCloseBegin

Collab event emitted when a collab session begins closing.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.CollabCloseBegin{
 call_id: String.t() | nil,
 receiver_thread_id: String.t() | nil,
 sender_thread_id: String.t() | nil
}

Codex.Events.CollabCloseEnd

Collab event emitted when a collab session closes.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.CollabCloseEnd{
 call_id: String.t() | nil,
 receiver_thread_id: String.t() | nil,
 sender_thread_id: String.t() | nil,
 status: map() | String.t() | atom() | nil
}

Codex.Events.CollabWaitingBegin

Collab event emitted when an agent begins waiting.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.CollabWaitingBegin{
 call_id: String.t() | nil,
 receiver_thread_ids: [String.t()],
 sender_thread_id: String.t() | nil
}

Codex.Events.CollabWaitingEnd

Collab event emitted when an agent stops waiting.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.CollabWaitingEnd{
 call_id: String.t() | nil,
 sender_thread_id: String.t() | nil,
 statuses: map() | nil
}

Codex.Events.CommandOutputDelta

Event delta emitted while a command execution is producing output.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.CommandOutputDelta{
 delta: String.t(),
 item_id: String.t(),
 thread_id: String.t() | nil,
 turn_id: String.t() | nil
}

Codex.Events.ConfigWarning

Event emitted when configuration warnings are reported.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.ConfigWarning{
 details: String.t() | nil,
 summary: String.t()
}

Codex.Events.ContextCompacted

Indicates that the conversation context was compacted.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.ContextCompacted{
 remaining_turns: non_neg_integer() | nil,
 removed_turns: non_neg_integer() | nil
}

Codex.Events.DeprecationNotice

Event emitted when the server reports a deprecated feature or behavior.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.DeprecationNotice{
 details: String.t() | nil,
 summary: String.t()
}

Codex.Events.ElicitationRequest

Event emitted for MCP elicitation requests.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.ElicitationRequest{
 id: String.t() | nil,
 message: String.t() | nil,
 server_name: String.t() | nil
}

Codex.Events.EnteredReviewMode

Event emitted when a review session starts.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.EnteredReviewMode{review_request: map() | nil}

Codex.Events.Error

General error event emitted by the CLI.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.Error{
 additional_details: String.t() | nil,
 codex_error_info: map() | nil,
 message: String.t(),
 thread_id: String.t() | nil,
 turn_id: String.t() | nil,
 will_retry: boolean() | nil
}

Codex.Events.ExitedReviewMode

Event emitted when a review session ends.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.ExitedReviewMode{result: map() | nil}

Codex.Events.FileChangeOutputDelta

Event delta emitted while a file change stream is producing output.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.FileChangeOutputDelta{
 delta: String.t(),
 item_id: String.t(),
 thread_id: String.t() | nil,
 turn_id: String.t() | nil
}

Codex.Events.ItemAgentMessageDelta

Event delta emitted when the agent produces message content.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.ItemAgentMessageDelta{
 item: map(),
 thread_id: String.t() | nil,
 turn_id: String.t() | nil
}

Codex.Events.ItemCompleted

Event emitted when an item completes.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.ItemCompleted{
 item: Codex.Items.t(),
 thread_id: String.t() | nil,
 turn_id: String.t() | nil
}

Codex.Events.ItemInputTextDelta

Event delta emitted for user input text items.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.ItemInputTextDelta{
 item: map(),
 thread_id: String.t() | nil,
 turn_id: String.t() | nil
}

Codex.Events.ItemStarted

Event emitted when an item begins processing.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.ItemStarted{
 item: Codex.Items.t(),
 thread_id: String.t() | nil,
 turn_id: String.t() | nil
}

Codex.Events.ItemUpdated

Event emitted when an in-progress item receives an update.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.ItemUpdated{
 item: Codex.Items.t(),
 thread_id: String.t() | nil,
 turn_id: String.t() | nil
}

Codex.Events.McpServerOauthLoginCompleted

Event emitted when an MCP server OAuth login completes.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.McpServerOauthLoginCompleted{
 error: String.t() | nil,
 name: String.t(),
 success: boolean()
}

Codex.Events.McpStartupComplete

Summary of MCP server startup completion.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.McpStartupComplete{servers: map() | list() | nil}

Codex.Events.McpStartupUpdate

Incremental status update for MCP server startup.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.McpStartupUpdate{
 message: String.t() | nil,
 server_name: String.t() | nil,
 status: String.t() | map() | atom() | nil
}

Codex.Events.McpToolCallProgress

Progress message emitted while an MCP tool call is running.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.McpToolCallProgress{
 item_id: String.t(),
 message: String.t(),
 thread_id: String.t() | nil,
 turn_id: String.t() | nil
}

Codex.Events.RawResponseItemCompleted

Event emitted when a raw response item completes on the app-server stream.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.RawResponseItemCompleted{
 item: Codex.Items.t() | map(),
 thread_id: String.t() | nil,
 turn_id: String.t() | nil
}

Codex.Events.ReasoningDelta

Event delta emitted while reasoning content is streaming.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.ReasoningDelta{
 content_index: integer() | nil,
 delta: String.t(),
 item_id: String.t(),
 thread_id: String.t() | nil,
 turn_id: String.t() | nil
}

Codex.Events.ReasoningSummaryDelta

Event delta emitted while reasoning summary text is streaming.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.ReasoningSummaryDelta{
 delta: String.t(),
 item_id: String.t(),
 summary_index: integer() | nil,
 thread_id: String.t() | nil,
 turn_id: String.t() | nil
}

Codex.Events.ReasoningSummaryPartAdded

Event emitted when a new reasoning summary part is added.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.ReasoningSummaryPartAdded{
 item_id: String.t(),
 summary_index: integer(),
 thread_id: String.t() | nil,
 turn_id: String.t() | nil
}

Codex.Events.RequestUserInput

Event emitted when the agent requests user input.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.RequestUserInput{
 id: String.t() | nil,
 questions: list(),
 turn_id: String.t() | nil
}

Codex.Events.SessionConfigured

Event emitted when a session is configured.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.SessionConfigured{
 approval_policy: term(),
 cwd: String.t() | nil,
 forked_from_id: String.t() | nil,
 history_entry_count: non_neg_integer() | nil,
 history_log_id: non_neg_integer() | nil,
 initial_messages: list() | nil,
 model: String.t() | nil,
 model_provider_id: String.t() | nil,
 reasoning_effort: String.t() | atom() | nil,
 rollout_path: String.t() | nil,
 sandbox_policy: term(),
 session_id: String.t() | nil
}

Codex.Events.ShutdownComplete

Event emitted when the agent shuts down.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.ShutdownComplete{}

Codex.Events.TerminalInteraction

Event emitted when stdin is written to an interactive command execution.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.TerminalInteraction{
 item_id: String.t(),
 process_id: String.t() | nil,
 stdin: String.t(),
 thread_id: String.t() | nil,
 turn_id: String.t() | nil
}

Codex.Events.ThreadRolledBack

Indicates that recent user turns were removed from context.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.ThreadRolledBack{num_turns: non_neg_integer() | nil}

Codex.Events.ThreadStarted

Event emitted when a thread is first created.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.ThreadStarted{metadata: map(), thread_id: String.t()}

Codex.Events.ThreadTokenUsageUpdated

Incremental token usage update emitted while a turn is in flight.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.ThreadTokenUsageUpdated{
 delta: map() | nil,
 rate_limits: Codex.Protocol.RateLimit.Snapshot.t() | map() | nil,
 thread_id: String.t() | nil,
 turn_id: String.t() | nil,
 usage: map()
}

Codex.Events.ToolCallCompleted

Event emitted when a tool call has completed and returned output.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.ToolCallCompleted{
 call_id: String.t(),
 output: map(),
 thread_id: String.t(),
 tool_name: String.t(),
 turn_id: String.t()
}

Codex.Events.ToolCallRequested

Indicates Codex requires a tool invocation to continue auto-run.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.ToolCallRequested{
 approved: boolean() | nil,
 approved_by_policy: boolean() | nil,
 arguments: map() | list() | String.t(),
 call_id: String.t(),
 capabilities: map() | nil,
 requires_approval: boolean(),
 sandbox_warnings: [String.t()] | nil,
 thread_id: String.t(),
 tool_name: String.t(),
 turn_id: String.t()
}

Codex.Events.TurnAborted

Event emitted when a turn is aborted.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.TurnAborted{
 reason: String.t() | atom() | map() | nil,
 turn_id: String.t() | nil
}

Codex.Events.TurnCompaction

Signals that Codex compacted a turn's history.

 Summary

 Types

 stage()

 t()

 Types

 stage()

 @type stage() :: :started | :completed | :failed | :unknown | String.t()

 t()

 @type t() :: %Codex.Events.TurnCompaction{
 compaction: map(),
 stage: stage(),
 thread_id: String.t() | nil,
 turn_id: String.t() | nil
}

Codex.Events.TurnCompleted

Final event for a turn, optionally carrying final response and usage data.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.TurnCompleted{
 error: map() | nil,
 final_response: Codex.Items.AgentMessage.t() | map() | nil,
 response_id: String.t() | nil,
 status: String.t() | nil,
 thread_id: String.t() | nil,
 turn_id: String.t() | nil,
 usage: map() | nil
}

Codex.Events.TurnContinuation

Signals that a continuation token is available for resuming the turn.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.TurnContinuation{
 continuation_token: String.t(),
 reason: String.t() | nil,
 retryable: boolean(),
 thread_id: String.t(),
 turn_id: String.t()
}

Codex.Events.TurnDiffUpdated

Event emitted when the app-server publishes a turn diff update.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.TurnDiffUpdated{
 diff: String.t() | map(),
 thread_id: String.t() | nil,
 turn_id: String.t() | nil
}

Codex.Events.TurnFailed

Event emitted when a turn fails.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.TurnFailed{
 error: map(),
 thread_id: String.t() | nil,
 turn_id: String.t() | nil
}

Codex.Events.TurnPlanUpdated

Event emitted when the app-server publishes an updated plan for the current turn.

 Summary

 Types

 plan_step()

 plan_step_status()

 t()

 Types

 plan_step()

 @type plan_step() :: %{step: String.t(), status: plan_step_status()}

 plan_step_status()

 @type plan_step_status() :: :pending | :in_progress | :completed

 t()

 @type t() :: %Codex.Events.TurnPlanUpdated{
 explanation: String.t() | nil,
 plan: [plan_step()],
 thread_id: String.t() | nil,
 turn_id: String.t() | nil
}

Codex.Events.TurnStarted

Event emitted when a new turn starts.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.TurnStarted{
 thread_id: String.t() | nil,
 turn_id: String.t() | nil
}

Codex.Events.UndoCompleted

Event emitted when an undo operation completes.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.UndoCompleted{
 message: String.t() | nil,
 success: boolean() | nil,
 turn_id: String.t() | nil
}

Codex.Events.UndoStarted

Event emitted when an undo operation begins.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.UndoStarted{
 message: String.t() | nil,
 turn_id: String.t() | nil
}

Codex.Events.Warning

Warning event emitted during a turn.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.Warning{message: String.t()}

Codex.Events.WindowsWorldWritableWarning

Event emitted when world-writable Windows paths are detected.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Events.WindowsWorldWritableWarning{
 extra_count: non_neg_integer(),
 failed_scan: boolean(),
 sample_paths: [String.t()]
}

Codex.FileSearch

Configuration for file search capabilities in threads and runs.
File search allows agents to search through uploaded files using vector stores.

 Summary

 Types

 t()

 Functions

 merge(left, right)

 new(config)

 Types

 t()

 @type t() :: %Codex.FileSearch{
 filters: map() | nil,
 include_search_results: boolean() | nil,
 ranking_options: map() | nil,
 vector_store_ids: [String.t()] | nil
}

 Functions

 merge(left, right)

 @spec merge(t() | nil, t() | nil) :: t() | nil

 new(config)

 @spec new(map() | keyword() | t() | nil) :: {:ok, t() | nil} | {:error, term()}

Codex.Files.Attachment

Represents a staged file attachment.

 Summary

 Types

 t()

 ttl()

 Types

 t()

 @type t() :: %Codex.Files.Attachment{
 checksum: String.t(),
 id: String.t(),
 inserted_at: DateTime.t(),
 name: String.t(),
 path: Path.t(),
 persist: boolean(),
 size: non_neg_integer(),
 ttl_ms: ttl()
}

 ttl()

 @type ttl() :: :infinity | non_neg_integer()

Codex.FunctionTool

Convenience macro for defining function-backed tools with JSON schemas.
Usage:
defmodule MyTool do
 use Codex.FunctionTool,
 name: "add",
 description: "Adds numbers",
 parameters: %{left: :number, right: :number},
 handler: fn %{"left" => left, "right" => right}, _ctx ->
 {:ok, %{"sum" => left + right}}
 end
end
Options:
	:name - tool name (defaults to module name)
	:description - human-friendly description
	:parameters - map of parameter names to type atoms or schema maps
	:required - list of required parameter names (defaults to all)
	:schema - explicit JSON schema (overrides generated schema)
	:strict? - when true sets "additionalProperties": false (default)
	:handler - function to invoke (falls back to handle/2 or handle/1)
	:enabled? - predicate to gate invocation (arity 1 or 2)
	:on_error - fallback handler invoked with the error (arity 2 or 3)

 Summary

 Types

 opts()

 Functions

 build_metadata(opts)

 Constructs metadata map used for tool registration.

 build_schema(parameters, opts \\ [])

 Builds a JSON schema map from a parameter definition.

 execute(module, opts, args, context)

 Executes the configured handler with normalized arguments.

 Types

 opts()

 @type opts() :: map() | keyword()

 Functions

 build_metadata(opts)

 @spec build_metadata(opts()) :: map()

Constructs metadata map used for tool registration.

 build_schema(parameters, opts \\ [])

 @spec build_schema(map(), keyword() | map()) :: map()

Builds a JSON schema map from a parameter definition.

 execute(module, opts, args, context)

 @spec execute(module(), map(), map() | list() | String.t() | nil, map()) ::
 {:ok, term()} | {:error, term()}

Executes the configured handler with normalized arguments.

Codex.Guardrail

Represents an input or output guardrail invoked around agent execution.

 Summary

 Types

 stage()

 t()

 Functions

 new(opts)

 Builds a guardrail definition.

 run(guardrail, payload, context)

 Executes the guardrail handler against the given payload and context.

 Types

 stage()

 @type stage() :: :input | :output

 t()

 @type t() :: %Codex.Guardrail{
 handler: function(),
 name: String.t(),
 run_in_parallel: boolean(),
 stage: stage()
}

 Functions

 new(opts)

 @spec new(keyword()) :: t()

Builds a guardrail definition.

 run(guardrail, payload, context)

 @spec run(t(), term(), map()) :: :ok | {:reject, String.t()} | {:tripwire, String.t()}

Executes the guardrail handler against the given payload and context.

Codex.HTTPClient behaviour

HTTP client abstraction for making HTTP requests.
This module provides a behaviour and default implementation for HTTP operations,
allowing easy mocking in tests while using a real HTTP client in production.
Configuration
The HTTP client implementation can be configured in config.exs:
config :codex_sdk, :http_client_impl, Codex.HTTPClient.Req
For testing, use the mock implementation:
config :codex_sdk, :http_client_impl, Codex.HTTPClient.Mock
Usage
GET request
{:ok, response} = Codex.HTTPClient.get("https://api.example.com/data", [{"Authorization", "Bearer token"}])
response.status # => 200
response.body # => "{...}"

POST request
{:ok, response} = Codex.HTTPClient.post("https://api.example.com/data", body, [{"Content-Type", "application/json"}])

 Summary

 Types

 headers()

 response()

 Callbacks

 get(url, headers)

 post(url, body, headers)

 Functions

 get(url, headers \\ [])

 Performs an HTTP GET request.

 post(url, body, headers \\ [])

 Performs an HTTP POST request.

 Types

 headers()

 @type headers() :: [{String.t(), String.t()}]

 response()

 @type response() :: %{status: integer(), body: binary() | map()}

 Callbacks

 get(url, headers)

 @callback get(url :: String.t(), headers :: headers()) ::
 {:ok, response()} | {:error, term()}

 post(url, body, headers)

 @callback post(url :: String.t(), body :: String.t(), headers :: headers()) ::
 {:ok, response()} | {:error, term()}

 Functions

 get(url, headers \\ [])

 @spec get(String.t(), headers()) :: {:ok, response()} | {:error, term()}

Performs an HTTP GET request.
Parameters
	url - The URL to request
	headers - List of header tuples (optional, defaults to [])

Returns
	{:ok, %{status: integer(), body: binary()}} on success
	{:error, reason} on failure

 post(url, body, headers \\ [])

 @spec post(String.t(), String.t(), headers()) :: {:ok, response()} | {:error, term()}

Performs an HTTP POST request.
Parameters
	url - The URL to request
	body - The request body as a string (usually JSON)
	headers - List of header tuples (optional, defaults to [])

Returns
	{:ok, %{status: integer(), body: binary()}} on success
	{:error, reason} on failure

Codex.HTTPClient.Mock

Mock HTTP client for testing.
This implementation returns empty successful responses and can be used
in tests where HTTP behavior is not the focus.
For more complex mocking scenarios, consider using Mox or configuring
custom response handlers.
Configuration
Set this as the HTTP client in test configuration:
config/test.exs
config :codex_sdk, :http_client_impl, Codex.HTTPClient.Mock

Codex.HTTPClient.Req

HTTP client implementation using Req.
This is the default production implementation that uses the Req HTTP client
library for making actual HTTP requests.

Codex.Handoff

Represents a handoff from one agent to another, wrapping the downstream agent as a tool with
optional input filtering and history nesting controls.

 Summary

 Types

 is_enabled()

 t()

 Functions

 default_tool_description(agent)

 Default tool description referencing the downstream agent.

 default_tool_name(agent)

 Default tool name derived from the downstream agent name.

 enabled?(handoff, context, agent)

 Evaluates whether a handoff is enabled for the given context/agent.

 wrap(agent, opts \\ [])

 Wraps an agent as a handoff with optional overrides.

 Types

 is_enabled()

 @type is_enabled() :: boolean() | (map(), Codex.Agent.t() -> boolean() | term())

 t()

 @type t() :: %Codex.Handoff{
 agent: Codex.Agent.t() | nil,
 agent_name: String.t(),
 input_filter:
 (Codex.Handoff.InputData.t() -> Codex.Handoff.InputData.t()) | nil,
 input_schema: map(),
 is_enabled: is_enabled(),
 nest_handoff_history: boolean() | nil,
 on_invoke_handoff: (map(), term() -> Codex.Agent.t()),
 strict_json_schema: boolean(),
 tool_description: String.t(),
 tool_name: String.t()
}

 Functions

 default_tool_description(agent)

 @spec default_tool_description(Codex.Agent.t()) :: String.t()

Default tool description referencing the downstream agent.

 default_tool_name(agent)

 @spec default_tool_name(Codex.Agent.t()) :: String.t()

Default tool name derived from the downstream agent name.

 enabled?(handoff, context, agent)

 @spec enabled?(t(), map(), Codex.Agent.t()) :: boolean()

Evaluates whether a handoff is enabled for the given context/agent.

 wrap(agent, opts \\ [])

 @spec wrap(
 Codex.Agent.t(),
 keyword()
) :: t()

Wraps an agent as a handoff with optional overrides.
Options:
	:tool_name - override the default tool name
	:tool_description - override the default tool description
	:input_filter - function invoked to filter history passed to the downstream agent
	:nest_handoff_history - override history nesting behaviour
	:input_schema - optional JSON schema map describing expected input
	:strict_json_schema - whether the schema should be treated as strict (default: true)
	:is_enabled - boolean or function to dynamically enable the handoff

Codex.Handoff.InputData

Carries conversation history and run context into handoff input filters.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Handoff.InputData{
 input_history: term(),
 new_items: list(),
 pre_handoff_items: list(),
 run_context: term()
}

Codex.Items.AgentMessage

Assistant-authored message item emitted by the Codex runtime, with optional parsed
payloads for structured output experiments.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Items.AgentMessage{
 id: String.t() | nil,
 parsed: map() | list() | nil,
 text: String.t(),
 type: :agent_message
}

Codex.Items.CommandExecution

Captures an execution request made by the agent, including aggregated output and
status metadata.

 Summary

 Types

 status()

 t()

 Types

 status()

 @type status() :: :in_progress | :completed | :failed | :declined

 t()

 @type t() :: %Codex.Items.CommandExecution{
 aggregated_output: String.t(),
 command: String.t(),
 command_actions: [map()],
 cwd: String.t() | nil,
 duration_ms: integer() | nil,
 exit_code: integer() | nil,
 id: String.t() | nil,
 process_id: String.t() | nil,
 status: status(),
 type: :command_execution
}

Codex.Items.Compaction

Raw response item emitted when compaction summaries are generated.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Items.Compaction{
 encrypted_content: String.t(),
 id: String.t() | nil,
 type: :compaction
}

Codex.Items.Error

Normalised error record describing failures surfaced during a turn.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Items.Error{
 id: String.t() | nil,
 message: String.t(),
 type: :error
}

Codex.Items.FileChange

Represents a file diff emitted by the agent, including per-path change metadata and
completion status.

 Summary

 Types

 change()

 change_kind()

 status()

 t()

 Types

 change()

 @type change() :: %{
 :path => String.t(),
 :kind => change_kind(),
 optional(:diff) => String.t(),
 optional(:move_path) => String.t() | nil
}

 change_kind()

 @type change_kind() :: :add | :delete | :update

 status()

 @type status() :: :in_progress | :completed | :failed | :declined

 t()

 @type t() :: %Codex.Items.FileChange{
 changes: [change()],
 id: String.t() | nil,
 status: status(),
 type: :file_change
}

Codex.Items.GhostSnapshot

Raw response item describing a ghost snapshot captured for undo.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Items.GhostSnapshot{
 ghost_commit: map(),
 id: String.t() | nil,
 type: :ghost_snapshot
}

Codex.Items.ImageView

An image view event emitted by the app-server when it renders a local image.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Items.ImageView{
 id: String.t() | nil,
 path: String.t(),
 type: :image_view
}

Codex.Items.McpToolCall

Metadata describing a tool invocation routed through an MCP server.

 Summary

 Types

 status()

 t()

 Types

 status()

 @type status() :: :in_progress | :completed | :failed

 t()

 @type t() :: %Codex.Items.McpToolCall{
 arguments: map() | list() | nil,
 duration_ms: integer() | nil,
 error: map() | nil,
 id: String.t() | nil,
 result: map() | nil,
 server: String.t(),
 status: status(),
 tool: String.t(),
 type: :mcp_tool_call
}

Codex.Items.RawResponseItem

Fallback container for unparsed raw response items.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Items.RawResponseItem{payload: map(), type: String.t()}

Codex.Items.Reasoning

Intermediate reasoning trace shared as part of tool or agent transparency.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Items.Reasoning{
 content: [String.t()],
 id: String.t() | nil,
 summary: [String.t()],
 text: String.t(),
 type: :reasoning
}

Codex.Items.ReviewMode

Indicates that review mode has been entered or exited.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Items.ReviewMode{
 entered: boolean(),
 id: String.t() | nil,
 review: String.t(),
 type: :review_mode
}

Codex.Items.TodoList

Structured checklist shared by the agent to track outstanding follow-up items.

 Summary

 Types

 t()

 todo_item()

 Types

 t()

 @type t() :: %Codex.Items.TodoList{
 id: String.t() | nil,
 items: [todo_item()],
 type: :todo_list
}

 todo_item()

 @type todo_item() :: %{text: String.t(), completed: boolean()}

Codex.Items.UserMessage

User-authored message item carrying a list of input blocks.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Items.UserMessage{
 content: [map()],
 id: String.t() | nil,
 type: :user_message
}

Codex.Items.WebSearch

Records a web search request issued by the agent, preserving the original query.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Items.WebSearch{
 id: String.t() | nil,
 query: String.t(),
 type: :web_search
}

Codex.ModelSettings

Model tuning options and provider selection used to configure codex runs.

 Summary

 Types

 t()

 Functions

 merge(base, overrides)

 Merges two settings structs, preferring non-nil values from overrides.

 new(settings)

 Builds a validated %Codex.ModelSettings{} struct.

 Types

 t()

 @type t() :: %Codex.ModelSettings{
 extra_body: map(),
 extra_headers: map(),
 extra_query: map(),
 frequency_penalty: number() | nil,
 max_tokens: pos_integer() | nil,
 metadata: map() | nil,
 parallel_tool_calls: boolean() | nil,
 presence_penalty: number() | nil,
 prompt_cache: term() | nil,
 provider: :responses | :chat,
 reasoning: term() | nil,
 response_include: term() | nil,
 store: term() | nil,
 temperature: number() | nil,
 tool_choice: term() | nil,
 top_logprobs: term() | nil,
 top_p: number() | nil,
 truncation: term() | nil
}

 Functions

 merge(base, overrides)

 @spec merge(t(), map() | keyword() | t()) :: {:ok, t()} | {:error, term()}

Merges two settings structs, preferring non-nil values from overrides.

 new(settings)

 @spec new(map() | keyword() | t()) :: {:ok, t()} | {:error, term()}

Builds a validated %Codex.ModelSettings{} struct.

Codex.Models

Known Codex models and their defaults.

 Summary

 Types

 apply_patch_tool_type()

 client_version()

 model_info()

 model_preset()

 model_upgrade()

 model_visibility()

 reasoning_effort()

 reasoning_effort_preset()

 reasoning_summary_format()

 shell_tool_type()

 truncation_policy()

 verbosity()

 Functions

 coerce_reasoning_effort(model, effort)

 Coerces a reasoning effort to the nearest supported value for a model.

 default_model(auth_mode \\ Auth.infer_auth_mode())

 Returns the SDK default model, honoring environment overrides when present.

 default_reasoning_effort(model \\ default_model())

 Returns the default reasoning effort for the given model (or the default model).

 description(model_id)

 Returns the description for a model, if known.

 display_name(model_id)

 Returns the display name for a model, if known.

 get_upgrade(model_id)

 Returns the upgrade information for a model, if available.

 list()

 Returns the list of supported models visible for the inferred auth mode.

 list_visible(auth_mode \\ :api, opts \\ [])

 Returns models visible in the model picker.

 normalize_reasoning_effort(value)

 Parses a reasoning effort value into its canonical atom form.

 reasoning_effort_to_string(effort)

 Renders a normalized reasoning effort as the CLI-friendly string value.

 reasoning_efforts()

 Lists the valid reasoning effort values understood by the SDK.

 supported_in_api?(model_id)

 Returns true if a model is supported via API key authentication.

 supported_reasoning_efforts(model_id)

 Returns the supported reasoning efforts for a model.

 tool_enabled?(model)

 Returns true when the given model supports tool execution.

 Types

 apply_patch_tool_type()

 @type apply_patch_tool_type() :: :freeform | :function

 client_version()

 @type client_version() :: {non_neg_integer(), non_neg_integer(), non_neg_integer()}

 model_info()

 @type model_info() :: %{
 slug: String.t(),
 display_name: String.t(),
 description: String.t() | nil,
 default_reasoning_level: reasoning_effort(),
 supported_reasoning_levels: [reasoning_effort_preset()],
 shell_type: shell_tool_type(),
 visibility: model_visibility(),
 minimal_client_version: client_version(),
 supported_in_api: boolean(),
 priority: integer(),
 upgrade: String.t() | nil,
 base_instructions: String.t() | nil,
 supports_reasoning_summaries: boolean(),
 support_verbosity: boolean(),
 default_verbosity: verbosity() | nil,
 apply_patch_tool_type: apply_patch_tool_type() | nil,
 truncation_policy: truncation_policy(),
 supports_parallel_tool_calls: boolean(),
 context_window: non_neg_integer() | nil,
 reasoning_summary_format: reasoning_summary_format(),
 experimental_supported_tools: [String.t()]
}

 model_preset()

 @type model_preset() :: %{
 id: String.t(),
 model: String.t(),
 display_name: String.t(),
 description: String.t(),
 default_reasoning_effort: reasoning_effort(),
 supported_reasoning_efforts: [reasoning_effort_preset()],
 is_default: boolean(),
 upgrade: model_upgrade() | nil,
 show_in_picker: boolean(),
 supported_in_api: boolean()
}

 model_upgrade()

 @type model_upgrade() :: %{
 id: String.t(),
 reasoning_effort_mapping:
 %{required(reasoning_effort()) => reasoning_effort()} | nil,
 migration_config_key: String.t(),
 model_link: String.t() | nil,
 upgrade_copy: String.t() | nil
}

 model_visibility()

 @type model_visibility() :: :list | :hide | :none

 reasoning_effort()

 @type reasoning_effort() :: :none | :minimal | :low | :medium | :high | :xhigh

 reasoning_effort_preset()

 @type reasoning_effort_preset() :: %{
 effort: reasoning_effort(),
 description: String.t()
}

 reasoning_summary_format()

 @type reasoning_summary_format() :: :none | :experimental

 shell_tool_type()

 @type shell_tool_type() ::
 :default | :local | :unified_exec | :disabled | :shell_command

 truncation_policy()

 @type truncation_policy() :: %{mode: :bytes | :tokens, limit: non_neg_integer()}

 verbosity()

 @type verbosity() :: :low | :medium | :high

 Functions

 coerce_reasoning_effort(model, effort)

 @spec coerce_reasoning_effort(String.t() | atom() | nil, reasoning_effort() | nil) ::
 reasoning_effort() | nil

Coerces a reasoning effort to the nearest supported value for a model.
Returns the input effort unchanged when the model is unknown or already supports it.

 default_model(auth_mode \\ Auth.infer_auth_mode())

 @spec default_model(:api | :chatgpt) :: String.t()

Returns the SDK default model, honoring environment overrides when present.

 default_reasoning_effort(model \\ default_model())

 @spec default_reasoning_effort(String.t() | atom() | nil) :: reasoning_effort() | nil

Returns the default reasoning effort for the given model (or the default model).

 description(model_id)

 @spec description(String.t() | atom()) :: String.t() | nil

Returns the description for a model, if known.

 display_name(model_id)

 @spec display_name(String.t() | atom()) :: String.t() | nil

Returns the display name for a model, if known.

 get_upgrade(model_id)

 @spec get_upgrade(String.t()) :: model_upgrade() | nil

Returns the upgrade information for a model, if available.

 list()

 @spec list() :: [model_preset(), ...]

Returns the list of supported models visible for the inferred auth mode.

 list_visible(auth_mode \\ :api, opts \\ [])

 @spec list_visible(
 :api | :chatgpt,
 keyword()
) :: [model_preset()]

Returns models visible in the model picker.
If auth_mode is :api, only include supported_in_api models.

 normalize_reasoning_effort(value)

 @spec normalize_reasoning_effort(String.t() | atom() | nil) ::
 {:ok, reasoning_effort() | nil} | {:error, term()}

Parses a reasoning effort value into its canonical atom form.

 reasoning_effort_to_string(effort)

 @spec reasoning_effort_to_string(reasoning_effort()) :: String.t()

Renders a normalized reasoning effort as the CLI-friendly string value.

 reasoning_efforts()

 @spec reasoning_efforts() :: [reasoning_effort(), ...]

Lists the valid reasoning effort values understood by the SDK.

 supported_in_api?(model_id)

 @spec supported_in_api?(String.t()) :: boolean()

Returns true if a model is supported via API key authentication.

 supported_reasoning_efforts(model_id)

 @spec supported_reasoning_efforts(String.t()) :: [reasoning_effort_preset()]

Returns the supported reasoning efforts for a model.

 tool_enabled?(model)

 @spec tool_enabled?(String.t() | atom() | nil) :: boolean()

Returns true when the given model supports tool execution.

Codex.Protocol.ByteRange

Byte range for text element positioning.

 Summary

 Types

 t()

 A byte range with start and end positions

 Functions

 from_map(map)

 to_map(br)

 Types

 t()

 @type t() :: %Codex.Protocol.ByteRange{
 end: non_neg_integer(),
 start: non_neg_integer()
}

A byte range with start and end positions

 Functions

 from_map(map)

 @spec from_map(map()) :: t()

 to_map(br)

 @spec to_map(t()) :: map()

Codex.Protocol.CollaborationMode

Collaboration mode configuration with presets.
Collaboration modes define different interaction styles with the model:
	:plan - planning mode with high reasoning
	:pair_programming - interactive coding with medium reasoning
	:execute - execution mode with high reasoning
	:custom - custom configuration

 Summary

 Types

 mode_kind()

 t()

 Collaboration mode with settings

 Functions

 from_map(data)

 to_map(cm)

 Types

 mode_kind()

 @type mode_kind() :: :plan | :pair_programming | :execute | :custom

 t()

 @type t() :: %Codex.Protocol.CollaborationMode{
 developer_instructions: (String.t() | nil) | nil,
 mode: mode_kind(),
 model: String.t(),
 reasoning_effort: (Codex.Models.reasoning_effort() | nil) | nil
}

Collaboration mode with settings

 Functions

 from_map(data)

 @spec from_map(map()) :: t()

 to_map(cm)

 @spec to_map(t()) :: map()

Codex.Protocol.ConfigTypes

Protocol configuration type enums and converters.

 Summary

 Types

 alt_screen_mode()

 personality()

 trust_level()

 web_search_mode()

 Functions

 decode_personality(arg1)

 decode_trust_level(arg1)

 decode_web_search_mode(arg1)

 encode_personality(atom)

 encode_trust_level(atom)

 encode_web_search_mode(atom)

 Types

 alt_screen_mode()

 @type alt_screen_mode() :: :auto | :always | :never

 personality()

 @type personality() :: :friendly | :pragmatic

 trust_level()

 @type trust_level() :: :trusted | :untrusted

 web_search_mode()

 @type web_search_mode() :: :disabled | :cached | :live

 Functions

 decode_personality(arg1)

 @spec decode_personality(String.t() | nil) :: personality() | nil

 decode_trust_level(arg1)

 @spec decode_trust_level(String.t() | nil) :: trust_level() | nil

 decode_web_search_mode(arg1)

 @spec decode_web_search_mode(String.t() | nil) :: web_search_mode()

 encode_personality(atom)

 @spec encode_personality(personality()) :: String.t()

 encode_trust_level(atom)

 @spec encode_trust_level(trust_level()) :: String.t()

 encode_web_search_mode(atom)

 @spec encode_web_search_mode(web_search_mode()) :: String.t()

Codex.Protocol.Elicitation

MCP elicitation request and action types.

 Summary

 Types

 action()

 Functions

 decode_action(binary)

 encode_action(atom)

 Types

 action()

 @type action() :: :accept | :decline | :cancel

 Functions

 decode_action(binary)

 @spec decode_action(String.t()) :: action()

 encode_action(atom)

 @spec encode_action(action()) :: String.t()

Codex.Protocol.Elicitation.Request

MCP elicitation request

 Summary

 Types

 t()

 Functions

 from_map(data)

 Types

 t()

 @type t() :: %Codex.Protocol.Elicitation.Request{
 id: String.t(),
 message: String.t(),
 server_name: String.t()
}

 Functions

 from_map(data)

 @spec from_map(map()) :: t()

Codex.Protocol.Ops

Encoders for Codex protocol operations submitted to the runtime.

 Summary

 Types

 op_type()

 review_decision()

 t()

 Operation payload wrapper.

 Functions

 new(type, payload \\ %{})

 Builds a protocol operation wrapper.

 to_map(ops)

 Encodes an operation into a protocol map.

 Types

 op_type()

 @type op_type() ::
 :interrupt
 | :user_input
 | :user_turn
 | :override_turn_context
 | :exec_approval
 | :patch_approval
 | :resolve_elicitation
 | :user_input_answer
 | :add_to_history
 | :get_history_entry_request
 | :list_mcp_tools
 | :refresh_mcp_servers
 | :list_custom_prompts
 | :list_skills
 | :compact
 | :undo
 | :thread_rollback
 | :review
 | :shutdown
 | :run_user_shell_command
 | :list_models

 review_decision()

 @type review_decision() ::
 :approved
 | :approved_for_session
 | :denied
 | :abort
 | {:approved_execpolicy_amendment, term()}

 t()

 @type t() :: %Codex.Protocol.Ops{payload: map(), type: op_type()}

Operation payload wrapper.

 Functions

 new(type, payload \\ %{})

 @spec new(op_type(), map()) :: t()

Builds a protocol operation wrapper.

 to_map(ops)

 @spec to_map(t()) :: map()

Encodes an operation into a protocol map.

Codex.Protocol.RateLimit

Rate limit snapshot types for TokenCount events.

Codex.Protocol.RateLimit.CreditsSnapshot

Credits balance snapshot

 Summary

 Types

 t()

 Functions

 from_map(data)

 to_map(snapshot)

 Types

 t()

 @type t() :: %Codex.Protocol.RateLimit.CreditsSnapshot{
 balance: (String.t() | nil) | nil,
 has_credits: boolean(),
 unlimited: boolean()
}

 Functions

 from_map(data)

 @spec from_map(map()) :: t()

 to_map(snapshot)

 @spec to_map(t()) :: map()

Codex.Protocol.RateLimit.Snapshot

Complete rate limit snapshot

 Summary

 Types

 plan_type()

 t()

 Functions

 from_map(data)

 to_map(snapshot)

 Types

 plan_type()

 @type plan_type() :: :plus | :pro | :team | :enterprise | :api | nil

 t()

 @type t() :: %Codex.Protocol.RateLimit.Snapshot{
 credits: (Codex.Protocol.RateLimit.CreditsSnapshot.t() | nil) | nil,
 plan_type: plan_type() | nil,
 primary: (Codex.Protocol.RateLimit.Window.t() | nil) | nil,
 secondary: (Codex.Protocol.RateLimit.Window.t() | nil) | nil
}

 Functions

 from_map(data)

 @spec from_map(map()) :: t()

 to_map(snapshot)

 @spec to_map(t()) :: map()

Codex.Protocol.RateLimit.Window

A rate limit window

 Summary

 Types

 t()

 Functions

 from_map(data)

 to_map(window)

 Types

 t()

 @type t() :: %Codex.Protocol.RateLimit.Window{
 resets_at: (integer() | nil) | nil,
 used_percent: float(),
 window_minutes: (integer() | nil) | nil
}

 Functions

 from_map(data)

 @spec from_map(map()) :: t()

 to_map(window)

 @spec to_map(t()) :: map()

Codex.Protocol.RequestUserInput

Types for agent-to-user input requests.
The RequestUserInput tool allows the agent to interactively ask
the user questions during execution.

Codex.Protocol.RequestUserInput.Answer

An answer to a question

 Summary

 Types

 t()

 Functions

 to_map(answer)

 Types

 t()

 @type t() :: %Codex.Protocol.RequestUserInput.Answer{answers: [String.t()]}

 Functions

 to_map(answer)

 @spec to_map(t()) :: map()

Codex.Protocol.RequestUserInput.Option

An option for a question

 Summary

 Types

 t()

 Functions

 from_map(data)

 Types

 t()

 @type t() :: %Codex.Protocol.RequestUserInput.Option{
 description: String.t(),
 label: String.t()
}

 Functions

 from_map(data)

 @spec from_map(map()) :: t()

Codex.Protocol.RequestUserInput.Question

A question to present to the user

 Summary

 Types

 t()

 Functions

 from_map(data)

 Types

 t()

 @type t() :: %Codex.Protocol.RequestUserInput.Question{
 header: String.t(),
 id: String.t(),
 options: ([Codex.Protocol.RequestUserInput.Option.t()] | nil) | nil,
 question: String.t()
}

 Functions

 from_map(data)

 @spec from_map(map()) :: t()

Codex.Protocol.RequestUserInput.Response

Response containing answers to all questions

 Summary

 Types

 t()

 Functions

 to_map(response)

 Types

 t()

 @type t() :: %Codex.Protocol.RequestUserInput.Response{
 answers: %{required(String.t()) => Codex.Protocol.RequestUserInput.Answer.t()}
}

 Functions

 to_map(response)

 @spec to_map(t()) :: map()

Codex.Protocol.TextElement

Text element with byte range for rich text input.
Used to preserve UI element metadata in user input text.

 Summary

 Types

 t()

 A text element with byte range and optional placeholder

 Functions

 from_map(data)

 to_map(te)

 Types

 t()

 @type t() :: %Codex.Protocol.TextElement{
 byte_range: Codex.Protocol.ByteRange.t(),
 placeholder: (String.t() | nil) | nil
}

A text element with byte range and optional placeholder

 Functions

 from_map(data)

 @spec from_map(map()) :: t()

 to_map(te)

 @spec to_map(t()) :: map()

Codex.RateLimit

Rate limit detection and handling utilities.
Detection
Rate limits are detected from:
	Codex.Error structs with :rate_limit kind
	HTTP 429 status codes
	Error messages containing "rate_limit"
	Retry-After headers in responses

Handling
When rate limited, the SDK:
	Extracts retry-after hint if available
	Backs off for the specified duration (or default)
	Emits telemetry event
	Retries the request

Configuration
config :codex_sdk,
 rate_limit_default_delay_ms: 60_000,
 rate_limit_max_delay_ms: 300_000,
 rate_limit_multiplier: 2.0
Example
Codex.RateLimit.with_rate_limit_handling(fn ->
 make_api_call()
end, max_attempts: 3)

 Summary

 Types

 rate_limit_info()

 Functions

 calculate_delay(rate_limit_info, attempt \\ 1)

 Calculates delay for rate limit backoff.

 detect(arg1)

 Detects rate limit error from response or error.

 handle(rate_limit_info, opts \\ [])

 Handles rate limit by waiting and emitting telemetry.

 parse_retry_after(arg1)

 Parses Retry-After header from response.

 with_rate_limit_handling(fun, opts \\ [])

 Wraps function with rate limit handling.

 Types

 rate_limit_info()

 @type rate_limit_info() :: %{
 optional(:retry_after_ms) => non_neg_integer() | nil,
 optional(:message) => String.t(),
 optional(:details) => map(),
 optional(:source) => atom(),
 optional(:body) => map()
}

 Functions

 calculate_delay(rate_limit_info, attempt \\ 1)

 @spec calculate_delay(rate_limit_info(), pos_integer()) :: non_neg_integer()

Calculates delay for rate limit backoff.
If the rate limit info contains an explicit retry_after_ms, that value
is used. Otherwise, exponential backoff is applied based on the attempt number.
Examples
iex> Codex.RateLimit.calculate_delay(%{retry_after_ms: 45_000}, 1)
45_000

iex> delay1 = Codex.RateLimit.calculate_delay(%{}, 1)
iex> delay2 = Codex.RateLimit.calculate_delay(%{}, 2)
iex> delay2 > delay1
true

 detect(arg1)

 @spec detect(term()) :: {:rate_limited, rate_limit_info()} | :ok

Detects rate limit error from response or error.
Returns {:rate_limited, info} if a rate limit is detected,
or :ok if not rate limited.
Examples
iex> error = Codex.Error.rate_limit("Rate limited", retry_after_ms: 30_000)
iex> {:rate_limited, info} = Codex.RateLimit.detect({:error, error})
iex> info.retry_after_ms
30_000

iex> Codex.RateLimit.detect({:ok, :success})
:ok

 handle(rate_limit_info, opts \\ [])

 @spec handle(
 rate_limit_info(),
 keyword()
) :: :ok

Handles rate limit by waiting and emitting telemetry.
Sleeps for the calculated delay and emits a [:codex, :rate_limit, :rate_limited]
telemetry event.
Options
	:attempt - Current attempt number (default: 1)

Examples
info = %{retry_after_ms: 1000}
Codex.RateLimit.handle(info, attempt: 1)
Sleeps for 1000ms and emits telemetry

 parse_retry_after(arg1)

 @spec parse_retry_after(map()) :: non_neg_integer() | nil

Parses Retry-After header from response.
Handles both numeric seconds and HTTP-date formats.
Examples
iex> Codex.RateLimit.parse_retry_after(%{headers: %{"retry-after" => "60"}})
60_000

iex> Codex.RateLimit.parse_retry_after(%{headers: %{"Retry-After" => "120"}})
120_000

iex> Codex.RateLimit.parse_retry_after(%{})
nil

 with_rate_limit_handling(fun, opts \\ [])

 @spec with_rate_limit_handling(
 (-> term()),
 keyword()
) :: term()

Wraps function with rate limit handling.
Automatically detects rate limit responses and retries with appropriate
backoff. Uses exponential backoff by default, or respects explicit
retry-after hints from the API.
Options
	:max_attempts - Maximum number of attempts (default: 3)

Examples
result = Codex.RateLimit.with_rate_limit_handling(fn ->
 make_api_call()
end, max_attempts: 3)

Codex.Realtime

Placeholder for realtime pipelines.
Realtime APIs are not yet supported by the Elixir SDK. Calls to this module
return an {:error, %Codex.Error{kind: :unsupported_feature}} tuple with
a descriptive message.

 Summary

 Functions

 connect(opts \\ %{})

 stream(opts \\ %{})

 Functions

 connect(opts \\ %{})

 @spec connect(map() | keyword()) :: {:error, Codex.Error.t()}

 stream(opts \\ %{})

 @spec stream(map() | keyword()) :: {:error, Codex.Error.t()}

Codex.Retry

Retry logic with configurable backoff strategies.
Strategies
	:exponential - Exponential backoff (default)
	:linear - Linear backoff
	:constant - Fixed delay
	fun/1 - Custom backoff function

Options
	:max_attempts - Maximum retry attempts (default: 4)
	:base_delay_ms - Base delay for backoff (default: 200)
	:max_delay_ms - Maximum delay cap (default: 10_000)
	:jitter - Add random jitter (default: true)
	:retry_if - Predicate to determine if error is retryable
	:on_retry - Callback invoked on each retry

Example
Codex.Retry.with_retry(fn ->
 make_api_call()
end, max_attempts: 3, strategy: :exponential)

 Summary

 Types

 opts()

 strategy()

 Functions

 calculate_delay(attempt, opts)

 Calculates delay for given attempt using configured strategy.

 default_opts()

 Returns the default options for retry operations.

 retryable?(arg1)

 Default predicate for retryable errors.

 with_retry(fun, opts \\ [])

 Executes function with retry logic.

 with_stream_retry(stream_fun, opts \\ [])

 Wraps an async stream with retry logic.

 Types

 opts()

 @type opts() :: [
 max_attempts: pos_integer(),
 base_delay_ms: non_neg_integer(),
 max_delay_ms: non_neg_integer(),
 jitter: boolean(),
 strategy: strategy(),
 retry_if: (term() -> boolean()),
 on_retry: (attempt :: pos_integer(), error :: term() -> :ok)
]

 strategy()

 @type strategy() ::
 :exponential
 | :linear
 | :constant
 | (attempt :: pos_integer() -> non_neg_integer())

 Functions

 calculate_delay(attempt, opts)

 @spec calculate_delay(pos_integer(), opts()) :: non_neg_integer()

Calculates delay for given attempt using configured strategy.
Examples
iex> opts = [base_delay_ms: 100, max_delay_ms: 10_000, strategy: :exponential, jitter: false]
iex> Codex.Retry.calculate_delay(1, opts)
100
iex> Codex.Retry.calculate_delay(2, opts)
200
iex> Codex.Retry.calculate_delay(3, opts)
400

 default_opts()

 @spec default_opts() :: opts()

Returns the default options for retry operations.
Useful for inspecting or modifying default configuration.
Examples
iex> Codex.Retry.default_opts()[:max_attempts]
4

 retryable?(arg1)

 @spec retryable?(term()) :: boolean()

Default predicate for retryable errors.
Retries on:
	Timeout errors
	Connection errors
	5xx HTTP errors
	Rate limit errors (429)
	Codex.Error with :rate_limit kind
	Stream errors
	Codex.TransportError with retryable?: true

Does NOT retry on:
	Authentication errors
	Invalid request errors
	Context window exceeded
	Unknown error types

Examples
iex> Codex.Retry.retryable?(:timeout)
true
iex> Codex.Retry.retryable?({:http_error, 503})
true
iex> Codex.Retry.retryable?({:http_error, 429})
true
iex> Codex.Retry.retryable?({:http_error, 401})
false
iex> Codex.Retry.retryable?(:auth_failed)
false

 with_retry(fun, opts \\ [])

 @spec with_retry((-> {:ok, term()} | {:error, term()}), opts()) ::
 {:ok, term()} | {:error, term()}

Executes function with retry logic.
Returns {:ok, result} on success or {:error, reason} after all attempts exhausted.
Options
	:max_attempts - Maximum number of attempts (default: 4)
	:base_delay_ms - Base delay in milliseconds (default: 200)
	:max_delay_ms - Maximum delay cap in milliseconds (default: 10_000)
	:jitter - Add random jitter to delays (default: true)
	:strategy - Backoff strategy (default: :exponential)
	:retry_if - Predicate function to determine if error is retryable
	:on_retry - Callback invoked before each retry with attempt number and error

Examples
Basic usage with defaults
Codex.Retry.with_retry(fn -> make_api_call() end)

Custom configuration
Codex.Retry.with_retry(
 fn -> risky_operation() end,
 max_attempts: 5,
 base_delay_ms: 100,
 strategy: :linear,
 on_retry: fn attempt, error ->
 Logger.warning("Retry #{attempt}: #{inspect(error)}")
 end
)

 with_stream_retry(stream_fun, opts \\ [])

 @spec with_stream_retry((-> Enumerable.t()), opts()) :: Enumerable.t()

Wraps an async stream with retry logic.
For streaming operations, retries the entire stream from the beginning
when a retryable error occurs.
Options
Same as with_retry/2.
Examples
stream = Codex.Retry.with_stream_retry(fn ->
 make_streaming_request()
end, max_attempts: 3)

Enum.each(stream, &process_item/1)

Codex.RunConfig

Per-run configuration applied to agent execution.

 Summary

 Types

 t()

 Functions

 new(config)

 Builds a validated %Codex.RunConfig{} struct.

 Types

 t()

 @type t() :: %Codex.RunConfig{
 auto_previous_response_id: boolean(),
 call_model_input_filter: function() | nil,
 conversation_id: String.t() | nil,
 file_search: Codex.FileSearch.t() | nil,
 group: term(),
 hooks: term(),
 input_guardrails: list(),
 max_turns: pos_integer(),
 model: String.t() | nil,
 model_settings: map() | struct() | nil,
 nest_handoff_history: boolean(),
 output_guardrails: list(),
 previous_response_id: String.t() | nil,
 session: term() | nil,
 session_input_callback: function() | nil,
 trace_id: term(),
 trace_include_sensitive_data: term(),
 tracing_disabled: term(),
 workflow: term()
}

 Functions

 new(config)

 @spec new(map() | keyword() | t()) :: {:ok, t()} | {:error, term()}

Builds a validated %Codex.RunConfig{} struct.

Codex.RunResultStreaming

Streaming result wrapper exposing semantic and raw event streams plus
cancellation controls.

 Summary

 Types

 t()

 Functions

 cancel(run_result_streaming, mode \\ :immediate)

 Cancels the streaming run.

 events(result)

 Returns a stream of semantic events. Automatically starts the underlying
streaming process on first invocation.

 pop(result, timeout \\ 5000)

 Pops the next semantic event from the queue, blocking up to timeout.

 raw_events(result)

 Returns a stream of the raw Codex events.

 usage(run_result_streaming)

 Returns the aggregated usage captured so far.

 Types

 t()

 @type t() :: %Codex.RunResultStreaming{
 control: pid(),
 queue: pid(),
 start_fun: (-> any())
}

 Functions

 cancel(run_result_streaming, mode \\ :immediate)

 @spec cancel(t(), :immediate | :after_turn) :: :ok

Cancels the streaming run.
Modes:
	:immediate - stop immediately
	:after_turn - finish the current turn then halt

 events(result)

 @spec events(t()) :: Enumerable.t()

Returns a stream of semantic events. Automatically starts the underlying
streaming process on first invocation.

 pop(result, timeout \\ 5000)

 @spec pop(t(), timeout()) :: {:ok, term()} | {:error, term()} | :done

Pops the next semantic event from the queue, blocking up to timeout.
Returns {:error, reason} if the stream terminates with an error.

 raw_events(result)

 @spec raw_events(t()) :: Enumerable.t()

Returns a stream of the raw Codex events.

 usage(run_result_streaming)

 @spec usage(t()) :: map()

Returns the aggregated usage captured so far.

Codex.Session behaviour

Behaviour for persisting conversation state across runs.

 Summary

 Types

 t()

 Callbacks

 clear(state)

 load(state)

 save(state, entry)

 Functions

 clear(arg)

 Clears stored history.

 load(arg)

 Loads session history.

 save(arg, entry)

 Persists a session entry.

 valid?(arg1)

 Validates a session reference.

 Types

 t()

 @type t() :: {module(), term()}

 Callbacks

 clear(state)

 @callback clear(state :: term()) :: :ok | {:error, term()}

 load(state)

 @callback load(state :: term()) :: {:ok, term()} | {:error, term()}

 save(state, entry)

 @callback save(state :: term(), entry :: term()) :: :ok | {:error, term()}

 Functions

 clear(arg)

 @spec clear(t()) :: :ok | {:error, term()}

Clears stored history.

 load(arg)

 @spec load(t()) :: {:ok, term()} | {:error, term()}

Loads session history.

 save(arg, entry)

 @spec save(t(), term()) :: :ok | {:error, term()}

Persists a session entry.

 valid?(arg1)

 @spec valid?(term()) :: boolean()

Validates a session reference.

Codex.Session.Memory

In-memory session adapter backed by an Agent. Suitable for tests and short-lived runs.

 Summary

 Functions

 start_link(opts \\ [])

 Starts a new memory session agent.

 Functions

 start_link(opts \\ [])

 @spec start_link(keyword()) :: {:ok, pid()} | {:error, term()}

Starts a new memory session agent.

Codex.Sessions

Helpers for inspecting Codex CLI session files and replaying recorded changes.

 Summary

 Types

 apply_result()

 session_entry()

 Functions

 apply(input, opts \\ [])

 Applies a unified diff or file_change items to the local working tree.

 list_sessions(opts \\ [])

 Lists known sessions by scanning the sessions directory.

 undo(snapshot, opts \\ [])

 Restores the working tree using a ghost snapshot item.

 Types

 apply_result()

 @type apply_result() :: %{
 stdout: String.t(),
 stderr: String.t(),
 exit_code: integer(),
 success: boolean()
}

 session_entry()

 @type session_entry() :: %{
 id: String.t(),
 path: String.t(),
 started_at: String.t() | nil,
 updated_at: String.t() | nil,
 cwd: String.t() | nil,
 originator: String.t() | nil,
 cli_version: String.t() | nil,
 metadata: map()
}

 Functions

 apply(input, opts \\ [])

 @spec apply(
 String.t() | list(),
 keyword()
) :: {:ok, apply_result()} | {:error, term()}

Applies a unified diff or file_change items to the local working tree.
Accepts either a diff string or a list of %Codex.Items.FileChange{} structs
(or raw change maps with path, kind, and diff fields).

 list_sessions(opts \\ [])

 @spec list_sessions(keyword()) :: {:ok, [session_entry()]} | {:error, term()}

Lists known sessions by scanning the sessions directory.
Options
	:sessions_dir - Override the default session directory.

 undo(snapshot, opts \\ [])

 @spec undo(
 term(),
 keyword()
) :: {:ok, map()} | {:error, term()}

Restores the working tree using a ghost snapshot item.
Accepts a %Codex.Items.GhostSnapshot{} struct, a raw response item map, or a
ghost commit map with id and preexisting untracked fields.

Codex.StreamEvent.AgentUpdated

Signals that the agent or run configuration was updated for this stream.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.StreamEvent.AgentUpdated{
 agent: Codex.Agent.t() | nil,
 run_config: Codex.RunConfig.t() | nil
}

Codex.StreamEvent.GuardrailResult

Guardrail evaluation outcome streamed to consumers.

 Summary

 Types

 result()

 stage()

 t()

 Types

 result()

 @type result() :: :ok | :reject | :tripwire

 stage()

 @type stage() :: :input | :output | :tool_input | :tool_output

 t()

 @type t() :: %Codex.StreamEvent.GuardrailResult{
 guardrail: String.t(),
 message: String.t() | nil,
 result: result(),
 stage: stage()
}

Codex.StreamEvent.RawResponses

Batch of raw codex events emitted for a turn.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.StreamEvent.RawResponses{
 events: [Codex.Events.t()],
 usage: map() | nil
}

Codex.StreamEvent.RunItem

Semantic wrapper for a streamed Codex event.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.StreamEvent.RunItem{event: Codex.Events.t(), type: atom() | nil}

Codex.StreamEvent.ToolApproval

Tool approval outcome emitted during streaming.

 Summary

 Types

 decision()

 t()

 Types

 decision()

 @type decision() :: :allow | :deny | :pending

 t()

 @type t() :: %Codex.StreamEvent.ToolApproval{
 call_id: String.t() | nil,
 decision: decision(),
 reason: String.t() | nil,
 tool_name: String.t()
}

Codex.ToolGuardrail

Guardrail applied before or after tool invocation.

 Summary

 Types

 stage()

 t()

 Functions

 new(opts)

 Builds a tool guardrail definition.

 run(arg1, event, payload, context)

 Runs the guardrail handler for a tool call.

 Types

 stage()

 @type stage() :: :input | :output

 t()

 @type t() :: %Codex.ToolGuardrail{
 behavior: :allow | :reject_content | :raise_exception,
 handler: function(),
 name: String.t(),
 run_in_parallel: boolean(),
 stage: stage()
}

 Functions

 new(opts)

 @spec new(keyword()) :: t()

Builds a tool guardrail definition.

 run(arg1, event, payload, context)

 @spec run(t(), map(), term(), map()) ::
 :ok | {:reject, String.t()} | {:tripwire, String.t()}

Runs the guardrail handler for a tool call.

Codex.ToolOutput

Structured tool output helpers that mirror the Responses input payload shapes.
Tool implementations may return these structs (or lists thereof). They will be converted
into codex-compatible maps before being forwarded back to the runner.

 Summary

 Types

 t()

 Functions

 file(attrs)

 Convenience constructor for file content tool outputs.

 image(attrs)

 Convenience constructor for image tool outputs.

 normalize(list)

 Normalizes structured tool outputs into codex-compatible maps.

 text(text)

 Convenience constructor for text tool outputs.

 Types

 t()

 @type t() ::
 Codex.ToolOutput.Text.t()
 | Codex.ToolOutput.Image.t()
 | Codex.ToolOutput.FileContent.t()
 | map()
 | list()

 Functions

 file(attrs)

 @spec file(keyword() | map()) :: Codex.ToolOutput.FileContent.t()

Convenience constructor for file content tool outputs.

 image(attrs)

 @spec image(keyword() | map()) :: Codex.ToolOutput.Image.t()

Convenience constructor for image tool outputs.

 normalize(list)

 @spec normalize(t()) :: list() | map()

Normalizes structured tool outputs into codex-compatible maps.
Lists are flattened and deduplicated to mirror the Python runner's history
merging semantics.

 text(text)

 @spec text(String.t()) :: Codex.ToolOutput.Text.t()

Convenience constructor for text tool outputs.

Codex.ToolOutput.FileContent

File content tool output.
Normalizes to an input_file map via Codex.ToolOutput.normalize/1.

 Summary

 Types

 t()

 File content tool output.

 Types

 t()

 @type t() :: %Codex.ToolOutput.FileContent{
 data: String.t() | nil,
 file_id: String.t() | nil,
 filename: String.t() | nil,
 mime_type: String.t() | nil,
 url: String.t() | nil
}

File content tool output.

Codex.ToolOutput.Image

Image tool output.
Normalizes to an input_image map via Codex.ToolOutput.normalize/1.

 Summary

 Types

 t()

 Image tool output.

 Types

 t()

 @type t() :: %Codex.ToolOutput.Image{
 data: String.t() | nil,
 detail: String.t() | nil,
 file_id: String.t() | nil,
 url: String.t()
}

Image tool output.

Codex.ToolOutput.Text

Text tool output.
Normalizes to an input_text map via Codex.ToolOutput.normalize/1.

 Summary

 Types

 t()

 Text tool output.

 Types

 t()

 @type t() :: %Codex.ToolOutput.Text{text: String.t()}

Text tool output.

Codex.Tools.ApplyPatchTool

Hosted tool for applying Codex apply_patch edits to files.
Options
	:base_path - Base directory for file paths (defaults to CWD)
	:approval - Approval callback for reviewing changes before applying
	:dry_run - If true, only validate without applying changes

Approval Callback
The approval callback can be:
	A function with arity 1-3: fn changes -> :ok | {:deny, reason} end

	A module implementing review_patch/2

Examples
Basic usage (*** Begin Patch format)
args = %{"input" => patch_content}
{:ok, result} = ApplyPatchTool.invoke(args, %{base_path: "/project"})

With approval
context = %{
 metadata: %{
 approval: fn changes, _ctx -> :ok end
 }
}
{:ok, result} = ApplyPatchTool.invoke(args, context)

Dry run to validate
{:ok, result} = ApplyPatchTool.invoke(args, %{dry_run: true})

 Summary

 Functions

 apply_hunks(content, hunks)

 Applies hunks to file content.

 parse_patch(patch)

 Parses an apply_patch or unified diff patch string into a list of file changes.

 Functions

 apply_hunks(content, hunks)

 @spec apply_hunks(String.t(), list()) :: {:ok, String.t()}

Applies hunks to file content.
Returns {:ok, new_content} or {:error, reason}.

 parse_patch(patch)

 @spec parse_patch(String.t()) :: {:ok, list()} | {:error, {:parse_error, String.t()}}

Parses an apply_patch or unified diff patch string into a list of file changes.

Codex.Tools.CodeInterpreterTool

Hosted code interpreter tool.

Codex.Tools.ComputerTool

Hosted computer action tool with safety callback.

Codex.Tools.FileSearchTool

Hosted tool for searching files by name pattern and content.
This tool provides local filesystem search capabilities using glob patterns
for file discovery and optional regex content matching.
Options
Options can be passed during registration or via context:
	:base_path - Base directory for search (default: cwd)
	:max_results - Maximum results to return (default: 100)
	:include_hidden - Include hidden files (default: false)
	:case_sensitive - Case-sensitive matching (default: true)

Usage
Direct Invocation
args = %{"pattern" => "**/*.ex", "base_path" => "/project"}
{:ok, result} = Codex.Tools.FileSearchTool.invoke(args, %{})
=> %{"count" => 42, "files" => [%{"path" => "lib/foo.ex"}, ...]}
With Content Search
args = %{
 "pattern" => "**/*.ex",
 "content" => "defmodule",
 "case_sensitive" => false
}
{:ok, result} = Codex.Tools.FileSearchTool.invoke(args, %{})
=> %{"count" => 10, "files" => [%{"path" => "lib/foo.ex", "matches" => [...]}]}
With Registry
{:ok, _handle} = Codex.Tools.register(Codex.Tools.FileSearchTool,
 base_path: "/project",
 max_results: 50
)

{:ok, result} = Codex.Tools.invoke("file_search", %{"pattern" => "*.ex"}, %{})
Result Format
Results are returned as a map with:
	"count" - Number of matching files
	"files" - List of file matches, each with:	"path" - Relative path from base_path
	"matches" - (optional) List of content matches with line numbers

Pattern Syntax
Uses Elixir's Path.wildcard/2 for glob patterns:
	* - Matches any characters except path separators
	** - Matches any characters including path separators (recursive)
	? - Matches a single character
	[abc] - Matches any character in the brackets
	{a,b} - Matches either pattern

Examples:
	"*.ex" - All .ex files in base directory
	"**/*.ex" - All .ex files recursively
	"lib/**/*.{ex,exs}" - All Elixir files under lib/
	"test/*_test.exs" - All test files in test/

Codex.Tools.Handle

Registration handle returned from Codex.Tools.register/2.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %Codex.Tools.Handle{module: module(), name: String.t()}

Codex.Tools.HostedMcpTool

Hosted MCP tool wrapper that delegates to Codex.MCP.Client.

Codex.Tools.ImageGenerationTool

Hosted image generation tool.

Codex.Tools.ShellCommandTool

Hosted tool for executing shell scripts via the user's default shell.

Codex.Tools.ShellTool

Hosted tool for executing shell commands.
Overview
ShellTool provides a fully-featured shell command execution environment with
approval integration, timeout handling, and output truncation. It can be used
standalone or registered in the tool registry.
Options
Options can be passed during registration or via context metadata:
	:executor - Custom executor function (default: built-in shell executor)
	:approval - Approval callback or policy for command review
	:max_output_bytes - Maximum output size before truncation (default: 10,000)
	:timeout_ms - Command timeout in milliseconds (default: 60,000)
	:cwd - Default working directory
	:env - Environment variables map

Usage
Direct Invocation
args = %{"command" => ["bash", "-lc", "ls -la"], "workdir" => "/tmp"}
{:ok, result} = Codex.Tools.ShellTool.invoke(args, %{})
=> %{"output" => "...", "exit_code" => 0, "success" => true}
With Registry
{:ok, _handle} = Codex.Tools.register(Codex.Tools.ShellTool,
 max_output_bytes: 5000,
 timeout_ms: 30_000,
 approval: fn cmd, _ctx -> :ok end
)

{:ok, result} =
 Codex.Tools.invoke("shell", %{"command" => ["bash", "-lc", "echo hello"]}, %{})
Approval Integration
The approval callback can be:
	A 2-arity function fn(command, context) -> :ok | {:deny, reason}

	A 3-arity function fn(command, context, metadata) -> :ok | {:deny, reason}

	A module implementing review_tool/2 callback

Custom Executor
The executor callback receives (args, context, metadata) and should return:
	{:ok, output} - where output is a string or map
	{:error, reason} - on failure

For testing, provide a mock executor:
executor = fn %{"command" => cmd}, _ctx, _meta ->
 {:ok, %{"output" => "mocked: #{cmd}", "exit_code" => 0}}
end

{:ok, _} = Codex.Tools.register(Codex.Tools.ShellTool, executor: executor)

Codex.Tools.VectorStoreSearchTool

Hosted vector store search tool for searching indexed documents.
This tool integrates with OpenAI's vector store file search capabilities,
allowing searches across indexed documents with optional filtering and ranking.
Options
Options can be passed during registration or via context metadata:
	:searcher - Required callback function to execute the search
	:vector_store_ids - List of vector store IDs to search
	:filters - Search filters to apply
	:ranking_options - Options for result ranking
	:include_search_results - Whether to include full search results

Usage
searcher = fn args, _ctx, _meta ->
 {:ok, %{results: [%{text: args["query"]}]}}
end

{:ok, _} = Codex.Tools.register(VectorStoreSearchTool,
 searcher: searcher,
 vector_store_ids: ["vs_123"]
)

Codex.Tools.ViewImageTool

Hosted tool for attaching local images to the conversation.

Codex.Tools.WebSearchTool

Hosted tool for performing web searches.
Overview
WebSearchTool provides web search functionality with support for multiple
search providers. It can be used standalone or registered in the tool registry.
Configuration
Requires a search provider to be configured. Supported providers:
	:tavily - Tavily Search API (requires TAVILY_API_KEY)
	:serper - Serper API (requires SERPER_API_KEY)
	:mock - Mock provider for testing (no API key needed)
	Custom callback via :searcher option

Options
Options can be passed during registration or via context metadata:
	:provider - Search provider (default: :tavily)
	:api_key - API key (or from environment variable)
	:max_results - Maximum results to return (default: 10)
	:searcher - Custom search callback function (overrides provider)

Usage
With Mock Provider (Testing)
{:ok, _} = Codex.Tools.register(Codex.Tools.WebSearchTool,
 provider: :mock
)

{:ok, result} = Codex.Tools.invoke("web_search", %{"query" => "elixir"}, %{})
=> %{"count" => 2, "results" => [...]}
With Tavily Provider
{:ok, _} = Codex.Tools.register(Codex.Tools.WebSearchTool,
 provider: :tavily,
 api_key: System.get_env("TAVILY_API_KEY")
)

{:ok, result} = Codex.Tools.invoke("web_search",
 %{"query" => "Elixir programming", "max_results" => 5},
 %{}
)
With Custom Searcher
searcher = fn args, _ctx, _meta ->
 {:ok, %{"count" => 1, "results" => [%{"title" => args["query"]}]}}
end

{:ok, _} = Codex.Tools.register(Codex.Tools.WebSearchTool,
 searcher: searcher
)
Environment Variables
	TAVILY_API_KEY - API key for Tavily search provider
	SERPER_API_KEY - API key for Serper search provider

Codex.Tools.WriteStdinTool

Hosted tool for writing to an existing exec session.

Codex.Transport behaviour

Behaviour for Codex transport implementations.
Transports handle the communication protocol between the SDK and the Codex runtime.

 Summary

 Types

 event_stream()

 input()

 thread()

 turn_opts()

 turn_result()

 Callbacks

 interrupt(thread, turn_id)

 Interrupts a running turn.

 run_turn(thread, input, turn_opts)

 Executes a single turn and returns the accumulated result.

 run_turn_streamed(thread, input, turn_opts)

 Executes a turn and returns a stream of events.

 Types

 event_stream()

 @type event_stream() :: Enumerable.t()

 input()

 @type input() :: String.t()

 thread()

 @type thread() :: Codex.Thread.t()

 turn_opts()

 @type turn_opts() :: map() | keyword()

 turn_result()

 @type turn_result() :: Codex.Turn.Result.t()

 Callbacks

 interrupt(thread, turn_id)

 (optional)

 @callback interrupt(thread(), turn_id :: String.t()) :: :ok | {:error, term()}

Interrupts a running turn.
Optional for transports that don't support it.

 run_turn(thread, input, turn_opts)

 @callback run_turn(thread(), input(), turn_opts()) ::
 {:ok, turn_result()} | {:error, term()}

Executes a single turn and returns the accumulated result.

 run_turn_streamed(thread, input, turn_opts)

 @callback run_turn_streamed(thread(), input(), turn_opts()) ::
 {:ok, event_stream()} | {:error, term()}

Executes a turn and returns a stream of events.

Codex.Voice

Placeholder for voice pipelines.
Voice capture/playback APIs are currently out of scope for the Elixir SDK.
Calls return an {:error, %Codex.Error{kind: :unsupported_feature}} tuple
with a clear message.

 Summary

 Functions

 call(opts \\ %{})

 stream(opts \\ %{})

 Functions

 call(opts \\ %{})

 @spec call(map() | keyword()) :: {:error, Codex.Error.t()}

 stream(opts \\ %{})

 @spec stream(map() | keyword()) :: {:error, Codex.Error.t()}

CodexSdk

Backwards-compatible entry module for the Codex SDK.
Prefer using the Codex module directly.

 Summary

 Functions

 resume_thread(thread_id, opts \\ %{}, thread_opts \\ %{})

 See Codex.resume_thread/3.

 start_thread(opts \\ %{}, thread_opts \\ %{})

 See Codex.start_thread/2.

 Functions

 resume_thread(thread_id, opts \\ %{}, thread_opts \\ %{})

See Codex.resume_thread/3.

 start_thread(opts \\ %{}, thread_opts \\ %{})

See Codex.start_thread/2.

Codex

Public entry point for the Codex SDK.
Provides helpers to start new threads or resume existing ones.

 Summary

 Types

 start_opts()

 thread_opts()

 Functions

 list_sessions(opts \\ [])

 Lists session files persisted by the Codex CLI.

 resume_thread(thread_id, opts \\ %{}, thread_opts \\ %{})

 Resumes an existing thread with the given thread_id.

 start_thread(opts \\ %{}, thread_opts \\ %{})

 Starts a new Codex thread returning a %Codex.Thread{} struct.

 Types

 start_opts()

 @type start_opts() :: map() | keyword() | Codex.Options.t()

 thread_opts()

 @type thread_opts() :: map() | keyword() | Codex.Thread.Options.t()

 Functions

 list_sessions(opts \\ [])

 @spec list_sessions(keyword()) ::
 {:ok, [Codex.Sessions.session_entry()]} | {:error, term()}

Lists session files persisted by the Codex CLI.
Returns entries parsed from ~/.codex/sessions by default.

 resume_thread(thread_id, opts \\ %{}, thread_opts \\ %{})

 @spec resume_thread(String.t() | :last, start_opts(), thread_opts()) ::
 {:ok, Codex.Thread.t()} | {:error, term()}

Resumes an existing thread with the given thread_id.
Pass :last to resume the most recent recorded session (equivalent to
codex exec resume --last).

 start_thread(opts \\ %{}, thread_opts \\ %{})

 @spec start_thread(start_opts(), thread_opts()) ::
 {:ok, Codex.Thread.t()} | {:error, term()}

Starts a new Codex thread returning a %Codex.Thread{} struct.

Codex.Options

Global configuration for Codex interactions.
Options are built from caller-supplied values merged with environment defaults.

 Summary

 Types

 t()

 Functions

 codex_path(opts)

 Determines the executable path to codex-rs.

 new(attrs \\ %{})

 Builds a validated options struct.

 Types

 t()

 @type t() :: %Codex.Options{
 agent_max_threads: pos_integer() | nil,
 api_key: String.t() | nil,
 base_url: String.t(),
 codex_path_override: String.t() | nil,
 hide_agent_reasoning: boolean(),
 history_max_bytes: non_neg_integer() | nil,
 history_persistence: String.t() | nil,
 model: String.t() | nil,
 model_auto_compact_token_limit: pos_integer() | nil,
 model_context_window: pos_integer() | nil,
 model_personality: Codex.Protocol.ConfigTypes.personality() | nil,
 model_reasoning_summary: String.t() | nil,
 model_supports_reasoning_summaries: boolean() | nil,
 model_verbosity: String.t() | nil,
 reasoning_effort: Codex.Models.reasoning_effort() | nil,
 review_model: String.t() | nil,
 telemetry_prefix: [atom()],
 tool_output_token_limit: pos_integer() | nil
}

 Functions

 codex_path(opts)

 @spec codex_path(t()) :: {:ok, String.t()} | {:error, term()}

Determines the executable path to codex-rs.
Order of precedence:
	Explicit override on the struct.
	CODEX_PATH environment variable.
	System.find_executable("codex").

 new(attrs \\ %{})

 @spec new(map() | keyword()) :: {:ok, t()} | {:error, term()}

Builds a validated options struct.
API keys are optional. When omitted, the Codex CLI relies on your existing
codex login (ChatGPT tokens stored in auth.json).

Codex.Thread

Represents a Codex conversation thread and exposes turn execution APIs.

 Summary

 Types

 t()

 user_input()

 user_input_block()

 Functions

 rate_limits(thread)

 Returns the most recent account rate limit snapshot for this thread, if any.

 run(thread, input, opts \\ %{})

 Executes a blocking multi-turn run using the agent runner.

 run_auto(thread, input, opts \\ [])

 Executes an auto-run loop, retrying while a continuation token is present.

 run_streamed(thread, input, opts \\ %{})

 Executes a run and returns a stream of events for progressive consumption.

 Types

 t()

 @type t() :: %Codex.Thread{
 codex_opts: Codex.Options.t(),
 continuation_token: String.t() | nil,
 labels: map(),
 metadata: map(),
 pending_tool_failures: [map()],
 pending_tool_outputs: [map()],
 rate_limits: Codex.Protocol.RateLimit.Snapshot.t() | map() | nil,
 resume: :last | nil,
 thread_id: String.t() | nil,
 thread_opts: Codex.Thread.Options.t(),
 transport: :exec | {:app_server, pid()},
 transport_ref: reference() | nil,
 usage: map()
}

 user_input()

 @type user_input() :: String.t() | [user_input_block()]

 user_input_block()

 @type user_input_block() :: map()

 Functions

 rate_limits(thread)

 @spec rate_limits(t()) :: Codex.Protocol.RateLimit.Snapshot.t() | map() | nil

Returns the most recent account rate limit snapshot for this thread, if any.

 run(thread, input, opts \\ %{})

 @spec run(t(), user_input(), map() | keyword()) ::
 {:ok, Codex.Turn.Result.t()} | {:error, term()}

Executes a blocking multi-turn run using the agent runner.

 run_auto(thread, input, opts \\ [])

 @spec run_auto(t(), String.t(), keyword()) ::
 {:ok, Codex.Turn.Result.t()} | {:error, term()}

Executes an auto-run loop, retrying while a continuation token is present.
Options:
	:max_attempts – maximum number of attempts (default: 3)
	:backoff – unary function invoked with current attempt (default: exponential sleep)
	:turn_opts – per-turn options forwarded to each attempt

 run_streamed(thread, input, opts \\ %{})

 @spec run_streamed(t(), user_input(), map() | keyword()) ::
 {:ok, Codex.RunResultStreaming.t()} | {:error, term()}

Executes a run and returns a stream of events for progressive consumption.
The stream is lazy; events will not be produced until enumerated.

Codex.Thread.Options

Per-thread configuration options.

 Summary

 Types

 collaboration_mode()

 color()

 config_override()

 history_persistence()

 model_verbosity()

 network_access()

 personality()

 rate_limit_opts()

 reasoning_summary()

 retry_opts()

 sandbox()

 sandbox_policy()

 sandbox_policy_type()

 t()

 transport()

 web_search_mode()

 Functions

 new(opts)

 Builds a thread options struct from various inputs.

 Types

 collaboration_mode()

 @type collaboration_mode() :: Codex.Protocol.CollaborationMode.t()

 color()

 @type color() :: :always | :never | :auto | String.t()

 config_override()

 @type config_override() :: String.t() | {String.t() | atom(), term()}

 history_persistence()

 @type history_persistence() :: String.t()

 model_verbosity()

 @type model_verbosity() :: :low | :medium | :high | String.t()

 network_access()

 @type network_access() :: :enabled | :restricted

 personality()

 @type personality() :: Codex.Protocol.ConfigTypes.personality()

 rate_limit_opts()

 @type rate_limit_opts() :: keyword()

 reasoning_summary()

 @type reasoning_summary() :: :auto | :concise | :detailed | :none | String.t()

 retry_opts()

 @type retry_opts() :: keyword()

 sandbox()

 @type sandbox() ::
 :default
 | :strict
 | :permissive
 | :read_only
 | :workspace_write
 | :danger_full_access
 | :external_sandbox
 | {:external_sandbox, network_access()}
 | String.t()

 sandbox_policy()

 @type sandbox_policy() :: %{
 optional(:type) => sandbox_policy_type(),
 optional(:writable_roots) => [String.t()],
 optional(:network_access) => boolean() | :enabled | :restricted | String.t(),
 optional(:exclude_tmpdir_env_var) => boolean(),
 optional(:exclude_slash_tmp) => boolean()
}

 sandbox_policy_type()

 @type sandbox_policy_type() ::
 :danger_full_access
 | :read_only
 | :workspace_write
 | :external_sandbox
 | String.t()

 t()

 @type t() :: %Codex.Thread.Options{
 additional_directories: [String.t()],
 apply_patch_freeform_enabled: boolean() | nil,
 approval_hook: module() | nil,
 approval_policy: module() | nil,
 approval_timeout_ms: pos_integer(),
 ask_for_approval:
 :untrusted | :on_failure | :on_request | :never | String.t() | nil,
 attachments: [map()] | [],
 auto_run: boolean(),
 base_instructions: String.t() | nil,
 collaboration_mode: collaboration_mode() | nil,
 color: color() | nil,
 compact_prompt: String.t() | nil,
 config: map() | nil,
 config_overrides: [config_override()],
 dangerously_bypass_approvals_and_sandbox: boolean(),
 developer_instructions: String.t() | nil,
 experimental_raw_events: boolean(),
 file_search: Codex.FileSearch.t() | nil,
 full_auto: boolean(),
 history_max_bytes: non_neg_integer() | nil,
 history_persistence: history_persistence() | nil,
 labels: map(),
 local_provider: String.t() | nil,
 metadata: map(),
 model: String.t() | nil,
 model_context_window: pos_integer() | nil,
 model_provider: String.t() | nil,
 model_reasoning_summary: reasoning_summary() | nil,
 model_supports_reasoning_summaries: boolean() | nil,
 model_verbosity: model_verbosity() | nil,
 network_access_enabled: boolean() | nil,
 oss: boolean(),
 output_last_message: String.t() | nil,
 output_schema: map() | nil,
 personality: personality() | nil,
 profile: String.t() | nil,
 rate_limit: boolean() | nil,
 rate_limit_opts: rate_limit_opts() | nil,
 request_max_retries: pos_integer() | nil,
 retry: boolean() | nil,
 retry_opts: retry_opts() | nil,
 sandbox: sandbox(),
 sandbox_policy: sandbox_policy() | sandbox_policy_type() | nil,
 shell_environment_policy: map() | nil,
 show_raw_agent_reasoning: boolean(),
 skills_enabled: boolean() | nil,
 skip_git_repo_check: boolean(),
 stream_idle_timeout_ms: pos_integer() | nil,
 stream_max_retries: pos_integer() | nil,
 transport: transport(),
 unified_exec_enabled: boolean() | nil,
 view_image_tool_enabled: boolean() | nil,
 web_search_enabled: boolean(),
 web_search_mode: web_search_mode(),
 working_directory: String.t() | nil
}

 transport()

 @type transport() :: :exec | {:app_server, pid()}

 web_search_mode()

 @type web_search_mode() :: Codex.Protocol.ConfigTypes.web_search_mode()

 Functions

 new(opts)

 @spec new(map() | keyword() | t()) :: {:ok, t()} | {:error, term()}

Builds a thread options struct from various inputs.

Codex.Turn.Result

Result struct returned from turn execution.

 Summary

 Types

 t()

 Functions

 json(arg1)

 Returns the decoded structured output when available.

 Types

 t()

 @type t() :: %Codex.Turn.Result{
 attempts: non_neg_integer(),
 events: [Codex.Events.t()],
 final_response: Codex.Items.AgentMessage.t() | map() | nil,
 last_response_id: String.t() | nil,
 raw: map(),
 thread: Codex.Thread.t(),
 usage: map() | nil
}

 Functions

 json(arg1)

 @spec json(t()) :: {:ok, term()} | {:error, term()}

Returns the decoded structured output when available.
If the turn produced structured output and it was successfully decoded, the
parsed map (or list) is returned. When the output is present but could not be
decoded, an error tuple is returned. For natural language responses, :not_structured
is returned.

Codex.Events

Typed event structs emitted during Codex turn execution.
Provides helpers to parse JSON-decoded maps into strongly typed structs and to
convert structs back into protocol maps for encoding.

 Summary

 Types

 t()

 Functions

 parse!(map)

 Parses a JSON-decoded map into a typed event struct, raising on unknown event types.

 to_map(event)

 Converts a typed event struct back into the JSON-serializable map representation.

 Types

 t()

 @type t() ::
 Codex.Events.ThreadStarted.t()
 | Codex.Events.TurnStarted.t()
 | Codex.Events.TurnContinuation.t()
 | Codex.Events.TurnCompleted.t()
 | Codex.Events.ThreadTokenUsageUpdated.t()
 | Codex.Events.TurnDiffUpdated.t()
 | Codex.Events.TurnPlanUpdated.t()
 | Codex.Events.TurnCompaction.t()
 | Codex.Events.ItemAgentMessageDelta.t()
 | Codex.Events.ItemInputTextDelta.t()
 | Codex.Events.ItemCompleted.t()
 | Codex.Events.ItemStarted.t()
 | Codex.Events.ItemUpdated.t()
 | Codex.Events.CommandOutputDelta.t()
 | Codex.Events.FileChangeOutputDelta.t()
 | Codex.Events.TerminalInteraction.t()
 | Codex.Events.ReasoningDelta.t()
 | Codex.Events.ReasoningSummaryDelta.t()
 | Codex.Events.ReasoningSummaryPartAdded.t()
 | Codex.Events.AppServerNotification.t()
 | Codex.Events.McpToolCallProgress.t()
 | Codex.Events.McpServerOauthLoginCompleted.t()
 | Codex.Events.AccountUpdated.t()
 | Codex.Events.AccountRateLimitsUpdated.t()
 | Codex.Events.AccountLoginCompleted.t()
 | Codex.Events.WindowsWorldWritableWarning.t()
 | Codex.Events.DeprecationNotice.t()
 | Codex.Events.RawResponseItemCompleted.t()
 | Codex.Events.Error.t()
 | Codex.Events.TurnFailed.t()
 | Codex.Events.ToolCallRequested.t()
 | Codex.Events.ToolCallCompleted.t()
 | Codex.Events.SessionConfigured.t()
 | Codex.Events.Warning.t()
 | Codex.Events.ContextCompacted.t()
 | Codex.Events.ThreadRolledBack.t()
 | Codex.Events.RequestUserInput.t()
 | Codex.Events.McpStartupUpdate.t()
 | Codex.Events.McpStartupComplete.t()
 | Codex.Events.ElicitationRequest.t()
 | Codex.Events.UndoStarted.t()
 | Codex.Events.UndoCompleted.t()
 | Codex.Events.TurnAborted.t()
 | Codex.Events.ShutdownComplete.t()
 | Codex.Events.EnteredReviewMode.t()
 | Codex.Events.ExitedReviewMode.t()
 | Codex.Events.ConfigWarning.t()
 | Codex.Events.CollabAgentSpawnBegin.t()
 | Codex.Events.CollabAgentSpawnEnd.t()
 | Codex.Events.CollabAgentInteractionBegin.t()
 | Codex.Events.CollabAgentInteractionEnd.t()
 | Codex.Events.CollabWaitingBegin.t()
 | Codex.Events.CollabWaitingEnd.t()
 | Codex.Events.CollabCloseBegin.t()
 | Codex.Events.CollabCloseEnd.t()

 Functions

 parse!(map)

 @spec parse!(map()) :: t()

Parses a JSON-decoded map into a typed event struct, raising on unknown event types.

 to_map(event)

 @spec to_map(t()) :: map()

Converts a typed event struct back into the JSON-serializable map representation.

Codex.Exec

Process manager wrapping the codex binary via erlexec.
Provides blocking and streaming helpers that decode JSONL event output into
typed %Codex.Events{} structs.

 Summary

 Types

 exec_opts()

 Functions

 review(target, opts)

 Runs codex exec review and accumulates all emitted events.

 review_stream(target, opts)

 Returns a lazy stream of events for codex exec review.

 run(input, opts)

 Runs codex in blocking mode and accumulates all emitted events.

 run_stream(input, opts)

 Returns a lazy stream of events. The underlying process starts on first
enumeration and stops automatically when the stream halts.

 Types

 exec_opts()

 @type exec_opts() :: %{
 optional(:codex_opts) => Codex.Options.t(),
 optional(:thread) => Codex.Thread.t(),
 optional(:turn_opts) => map(),
 optional(:continuation_token) => String.t(),
 optional(:attachments) => [Codex.Files.Attachment.t()],
 optional(:output_schema_path) => String.t(),
 optional(:tool_outputs) => [map()],
 optional(:tool_failures) => [map()],
 optional(:env) => map(),
 optional(:clear_env?) => boolean(),
 optional(:cancellation_token) => String.t(),
 optional(:timeout_ms) => pos_integer()
}

 Functions

 review(target, opts)

 @spec review(term(), exec_opts()) :: {:ok, map()} | {:error, term()}

Runs codex exec review and accumulates all emitted events.

 review_stream(target, opts)

 @spec review_stream(term(), exec_opts()) :: {:ok, Enumerable.t()} | {:error, term()}

Returns a lazy stream of events for codex exec review.

 run(input, opts)

 @spec run(String.t(), exec_opts()) :: {:ok, map()} | {:error, term()}

Runs codex in blocking mode and accumulates all emitted events.

 run_stream(input, opts)

 @spec run_stream(String.t(), exec_opts()) :: {:ok, Enumerable.t()} | {:error, term()}

Returns a lazy stream of events. The underlying process starts on first
enumeration and stops automatically when the stream halts.

Codex.Items

Typed representations of thread items emitted by the Codex runtime.
This module provides helpers to convert JSON-style maps (with string keys)
into structs and back, keeping status fields normalised as atoms.

 Summary

 Types

 t()

 Functions

 parse!(map)

 Parses a JSON-decoded map into a typed thread item struct.

 parse_raw_response_item(map)

 Parses a raw response item (snake_case response output) into a typed struct.

 to_map(item)

 Converts a typed item struct back into its JSON-serialisable map representation.

 Types

 t()

 @type t() ::
 Codex.Items.AgentMessage.t()
 | Codex.Items.Reasoning.t()
 | Codex.Items.CommandExecution.t()
 | Codex.Items.FileChange.t()
 | Codex.Items.UserMessage.t()
 | Codex.Items.ImageView.t()
 | Codex.Items.ReviewMode.t()
 | Codex.Items.McpToolCall.t()
 | Codex.Items.WebSearch.t()
 | Codex.Items.TodoList.t()
 | Codex.Items.Error.t()
 | Codex.Items.GhostSnapshot.t()
 | Codex.Items.Compaction.t()
 | Codex.Items.RawResponseItem.t()

 Functions

 parse!(map)

 @spec parse!(map()) :: t()

Parses a JSON-decoded map into a typed thread item struct.

 parse_raw_response_item(map)

 @spec parse_raw_response_item(map()) :: {:ok, t()} | {:error, term()}

Parses a raw response item (snake_case response output) into a typed struct.

 to_map(item)

 @spec to_map(t()) :: map()

Converts a typed item struct back into its JSON-serialisable map representation.

Codex.Telemetry

Telemetry helpers and default logging for Codex events.

 Summary

 Types

 telemetry_event()

 Functions

 attach_default_logger(opts \\ [])

 Attaches the default logger to thread telemetry events.

 configure(opts \\ [])

 Configures OpenTelemetry exporting if the required environment variables are present.

 emit(event, measurements \\ %{}, metadata \\ %{})

 Emits a telemetry event with the given measurements and metadata.

 Types

 telemetry_event()

 @type telemetry_event() :: [atom()]

 Functions

 attach_default_logger(opts \\ [])

 @spec attach_default_logger(keyword()) :: :ok | {:error, :already_exists}

Attaches the default logger to thread telemetry events.

 configure(opts \\ [])

 @spec configure(keyword()) :: :ok

Configures OpenTelemetry exporting if the required environment variables are present.
Reads CODEX_OTLP_ENDPOINT and optional CODEX_OTLP_HEADERS from the provided :env map
(defaults to System.get_env/0) and wires the exporter when set.

 emit(event, measurements \\ %{}, metadata \\ %{})

 @spec emit(telemetry_event(), map(), map()) :: :ok

Emits a telemetry event with the given measurements and metadata.

Codex.Files

Attachment staging helpers mirroring the Python SDK file APIs.

 Summary

 Functions

 attach(opts, attachment)

 Attaches an Attachment to the supplied ThreadOptions.

 cleanup!()

 Deprecated alias retained for backwards compatibility.

 force_cleanup()

 Removes staged files that are not marked as persistent.

 list_staged()

 Lists staged attachments currently cached.

 metrics()

 Returns high-level staging metrics including counts and total bytes.

 reset!()

 Resets the staging directory and manifest.

 stage(path, opts \\ [])

 Stages a file for future attachment invocation.

 staging_dir()

 Returns the staging directory path.

 Functions

 attach(opts, attachment)

 @spec attach(Codex.Thread.Options.t(), Codex.Files.Attachment.t()) ::
 Codex.Thread.Options.t()

Attaches an Attachment to the supplied ThreadOptions.

 cleanup!()

 @spec cleanup!() :: :ok

Deprecated alias retained for backwards compatibility.

 force_cleanup()

 @spec force_cleanup() :: :ok

Removes staged files that are not marked as persistent.

 list_staged()

 @spec list_staged() :: [Codex.Files.Attachment.t()]

Lists staged attachments currently cached.

 metrics()

 @spec metrics() :: map()

Returns high-level staging metrics including counts and total bytes.

 reset!()

 @spec reset!() :: :ok

Resets the staging directory and manifest.

 stage(path, opts \\ [])

 @spec stage(
 Path.t(),
 keyword()
) :: {:ok, Codex.Files.Attachment.t()} | {:error, term()}

Stages a file for future attachment invocation.
Options:
	:name - override the attachment name (defaults to the basename of path)
	:persist - keep file around indefinitely (default: false)
	:ttl_ms - custom time-to-live for ephemeral attachments. Accepts :infinity or a
non-negative integer in milliseconds. Defaults to Application.get_env/3 lookups of
:attachment_ttl_ms and falls back to 24 hours.

 staging_dir()

 @spec staging_dir() :: Path.t()

Returns the staging directory path.

Codex.Files.Registry

GenServer-backed manifest that tracks staged file attachments, deduplicates by checksum,
and prunes expired entries on a schedule. This powers the public Codex.Files helpers.

 Summary

 Types

 stage_opts()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 ensure_started()

 Ensures the registry is running, starting it under the current process when necessary.

 force_cleanup()

 Triggers an immediate cleanup pass to remove expired attachments.

 list()

 Lists all staged attachments currently tracked in the manifest.

 metrics()

 Aggregates counts, sizes, and TTL information for staged attachments.

 reset(staging_dir)

 Clears the manifest and deletes staged files within the provided staging directory.

 stage(opts)

 Inserts or refreshes a staged attachment using the supplied options, returning the
canonical Attachment struct stored in ETS.

 start_link(opts \\ [])

 Types

 stage_opts()

 @type stage_opts() :: %{
 checksum: String.t(),
 name: String.t(),
 persist: boolean(),
 ttl_ms: :infinity | pos_integer(),
 size: non_neg_integer(),
 source_path: Path.t(),
 destination_path: Path.t()
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 ensure_started()

 @spec ensure_started() :: {:ok, pid()} | {:error, term()}

Ensures the registry is running, starting it under the current process when necessary.

 force_cleanup()

 @spec force_cleanup() :: :ok

Triggers an immediate cleanup pass to remove expired attachments.

 list()

 @spec list() :: [Codex.Files.Attachment.t()]

Lists all staged attachments currently tracked in the manifest.

 metrics()

 @spec metrics() :: map()

Aggregates counts, sizes, and TTL information for staged attachments.

 reset(staging_dir)

 @spec reset(Path.t()) :: :ok

Clears the manifest and deletes staged files within the provided staging directory.

 stage(opts)

 @spec stage(stage_opts()) :: {:ok, Codex.Files.Attachment.t()} | {:error, term()}

Inserts or refreshes a staged attachment using the supplied options, returning the
canonical Attachment struct stored in ETS.

 start_link(opts \\ [])

 @spec start_link(keyword()) :: GenServer.on_start()

Codex.OutputSchemaFile

Persists structured output schemas to temporary JSON files so they can be passed to the
Codex CLI. Returns the generated path alongside a cleanup function for RAII-style usage.

 Summary

 Functions

 create(schema)

 Persists the provided schema to a temporary JSON file and returns {path, cleanup_fun}.

 Functions

 create(schema)

 @spec create(term()) :: {:ok, String.t() | nil, (-> :ok)} | {:error, term()}

Persists the provided schema to a temporary JSON file and returns {path, cleanup_fun}.
The schema may be any JSON-encodable term (map, list, primitive). When nil is supplied
no file is created and the return path is nil.

Codex.ApprovalError exception

Error returned when an approval policy denies a tool invocation.

 Summary

 Types

 t()

 Functions

 new(tool, reason)

 Types

 t()

 @type t() :: %Codex.ApprovalError{
 __exception__: true,
 message: String.t(),
 reason: String.t() | nil,
 tool: String.t()
}

 Functions

 new(tool, reason)

 @spec new(String.t(), String.t()) :: t()

Codex.Approvals

Approval helpers invoked by the auto-run pipeline when actions require consent.
Supports both synchronous and asynchronous approval workflows via pluggable hooks.

 Summary

 Types

 async_result()

 decision()

 review_result()

 Functions

 review_tool(policy_or_hook, event, context, opts \\ [])

 Reviews a tool invocation given the configured policy or hook.

 Types

 async_result()

 @type async_result() ::
 {:async, reference()} | {:async, reference(), metadata :: map()}

 decision()

 @type decision() :: :allow | {:deny, String.t()}

 review_result()

 @type review_result() :: decision() | async_result()

 Functions

 review_tool(policy_or_hook, event, context, opts \\ [])

 @spec review_tool(term(), map(), map(), keyword()) :: review_result()

Reviews a tool invocation given the configured policy or hook.
Parameters
	policy_or_hook - StaticPolicy struct, hook module, or nil
	event - Tool call event (must contain :tool_name and :call_id)
	context - Approval context
	opts - Optional keyword list with :timeout (default: 30_000ms)

Returns
	:allow - approve the operation
	{:deny, reason} - deny with reason
	{:async, ref} or {:async, ref, metadata} - async approval pending

Telemetry
Emits the following events:
	[:codex, :approval, :requested] - when approval is requested
	[:codex, :approval, :approved] - when synchronously approved
	[:codex, :approval, :denied] - when denied
	[:codex, :approval, :timeout] - when async approval times out

Codex.Approvals.Hook behaviour

Behaviour for implementing pluggable approval hooks.
Hooks can provide synchronous or asynchronous approval decisions for tool invocations,
command executions, and file access operations.
Callbacks
	prepare/2 - Called before the approval review, can mutate metadata
	review_tool/3 - Review a tool invocation
	review_command/3 - Review a command execution (optional)
	review_file/3 - Review a file access operation (optional)
	await/2 - Wait for an async approval decision (optional)

Return Values
Synchronous hooks return:
	:allow - approve the operation
	{:allow, opts} - approve with additional options (used by app-server approvals)
	{:deny, reason} - deny with a reason string

Asynchronous hooks return:
	{:async, ref} - defer decision, will call await/2 later
	{:async, ref, metadata} - defer decision with additional metadata

{:allow, opts} supports :grant_root to grant file-change approvals for the
session when requested by the app-server.
Example
defmodule MyApp.SlackApprovalHook do
 @behaviour Codex.Approvals.Hook

 @impl true
 def prepare(event, context) do
 # Add custom metadata before review
 {:ok, Map.put(context, :slack_channel, "#approvals")}
 end

 @impl true
 def review_tool(event, context, _opts) do
 # Post to Slack and return async ref
 ref = make_ref()
 MyApp.SlackClient.post_approval_request(ref, event, context)
 {:async, ref}
 end

 @impl true
 def await(ref, timeout) do
 # Wait for Slack response
 receive do
 {:approval_decision, ^ref, decision} -> {:ok, decision}
 after
 timeout -> {:error, :timeout}
 end
 end
end

 Summary

 Types

 allow_opts()

 async_ref()

 async_result()

 context()

 decision()

 event()

 opts()

 review_result()

 Callbacks

 await(async_ref, timeout)

 Wait for an async approval decision.

 prepare(event, context)

 Called before any review operation to prepare or augment context.

 review_command(event, context, opts)

 Review a command execution request (optional).

 review_file(event, context, opts)

 Review a file access request (optional).

 review_tool(event, context, opts)

 Review a tool invocation request.

 Functions

 default_prepare(event, context)

 Default prepare implementation that returns the context unchanged.

 default_review(event, context, opts)

 Default review implementation that allows all operations.

 Types

 allow_opts()

 @type allow_opts() :: [
 for_session: boolean(),
 execpolicy_amendment: [String.t()],
 grant_root: String.t() | Path.t()
]

 async_ref()

 @type async_ref() :: reference()

 async_result()

 @type async_result() ::
 {:async, async_ref()} | {:async, async_ref(), metadata :: map()}

 context()

 @type context() :: map()

 decision()

 @type decision() :: :allow | {:allow, allow_opts()} | {:deny, String.t() | atom()}

 event()

 @type event() :: map()

 opts()

 @type opts() :: keyword()

 review_result()

 @type review_result() :: decision() | async_result()

 Callbacks

 await(async_ref, timeout)

 (optional)

 @callback await(async_ref(), timeout :: pos_integer()) ::
 {:ok, decision()} | {:error, :timeout | term()}

Wait for an async approval decision.
This callback is called when a review returned {:async, ref} and the
system needs to wait for the decision.
Parameters
	ref - The reference returned by the review callback
	timeout - Maximum time to wait in milliseconds

Returns
	{:ok, decision} - the approval decision
	{:error, :timeout} - timeout reached
	{:error, reason} - other error

 prepare(event, context)

 (optional)

 @callback prepare(event(), context()) :: {:ok, context()} | {:error, term()}

Called before any review operation to prepare or augment context.
This callback can be used to add metadata, initialize state, or transform
the context before it's passed to review callbacks.

 review_command(event, context, opts)

 (optional)

 @callback review_command(event(), context(), opts()) :: review_result()

Review a command execution request (optional).
If not implemented, commands are allowed by default.

 review_file(event, context, opts)

 (optional)

 @callback review_file(event(), context(), opts()) :: review_result()

Review a file access request (optional).
If not implemented, file operations are allowed by default.

 review_tool(event, context, opts)

 @callback review_tool(event(), context(), opts()) :: review_result()

Review a tool invocation request.
Parameters
	event - The tool call event (contains tool_name, arguments, call_id, etc.)
	context - The approval context (thread, metadata, etc.)
	opts - Hook-specific options

Returns
	:allow - approve the tool invocation
	{:deny, reason} - deny with a reason
	{:async, ref} - defer decision, will be awaited later
	{:async, ref, metadata} - defer with additional metadata

 Functions

 default_prepare(event, context)

Default prepare implementation that returns the context unchanged.

 default_review(event, context, opts)

Default review implementation that allows all operations.

Codex.Approvals.Registry

ETS-based registry for tracking async approval requests.
This module maintains state for pending approval requests that are awaiting
decisions from external systems (e.g., Slack, Jira, custom webhooks).

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 cleanup_expired(max_age_ms)

 Cleans up expired approval requests.

 delete(ref)

 Deletes an approval request from the registry.

 lookup(ref)

 Looks up an approval request by reference.

 register(ref, metadata)

 Registers a new async approval request.

 start_link(opts \\ [])

 Starts the approval registry.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 cleanup_expired(max_age_ms)

 @spec cleanup_expired(pos_integer()) :: non_neg_integer()

Cleans up expired approval requests.

 delete(ref)

 @spec delete(reference()) :: :ok

Deletes an approval request from the registry.

 lookup(ref)

 @spec lookup(reference()) :: {:ok, map()} | {:error, :not_found}

Looks up an approval request by reference.

 register(ref, metadata)

 @spec register(reference(), map()) :: :ok

Registers a new async approval request.

 start_link(opts \\ [])

Starts the approval registry.

Codex.Approvals.StaticPolicy

Simple allow/deny approval policy used for tests and defaults.

 Summary

 Types

 t()

 Functions

 allow(opts \\ [])

 Always allow approvals.

 deny(opts \\ [])

 Always deny approvals with an optional reason.

 Types

 t()

 @type t() :: %Codex.Approvals.StaticPolicy{
 mode: :allow | :deny,
 reason: String.t() | nil
}

 Functions

 allow(opts \\ [])

 @spec allow(keyword()) :: t()

Always allow approvals.

 deny(opts \\ [])

 @spec deny(keyword()) :: t()

Always deny approvals with an optional reason.

Codex.MCP.Client

MCP JSON-RPC client for stdio and streamable HTTP transports.
Tool Name Qualification
When list_tools/2 is called with qualify?: true, tool names are qualified with
the server name prefix in the format mcp__<server>__<tool>. This follows the
OpenAI tool name constraint (^[a-zA-Z0-9_-]+$).
If the qualified name exceeds 64 characters, it is truncated and a SHA1 hash suffix
is appended to ensure uniqueness.
Tool Invocation
The call_tool/4 function invokes tools on the MCP server with support for:
	Retry Logic - Configurable retries with exponential backoff
	Approval Integration - Optional approval callbacks before invocation
	Timeout Control - Per-call timeout settings
	Telemetry - Events emitted for observability

Telemetry Events
The following telemetry events are emitted during tool invocation:
	[:codex, :mcp, :tool_call, :start] - When a tool call begins
	Measurements: %{system_time: integer()}
	Metadata: %{tool: String.t(), arguments: map(), server_name: String.t() | nil}

	[:codex, :mcp, :tool_call, :success] - When a tool call succeeds
	Measurements: %{duration: integer()}
	Metadata: %{tool: String.t(), arguments: map(), server_name: String.t() | nil, attempt: integer()}

	[:codex, :mcp, :tool_call, :failure] - When a tool call fails
	Measurements: %{duration: integer()}
	Metadata: %{tool: String.t(), arguments: map(), server_name: String.t() | nil, reason: term(), attempt: integer()}

 Summary

 Types

 capabilities()

 t()

 transport_ref()

 Functions

 call_tool(client, tool, args, opts \\ [])

 Invokes a tool on the MCP server.

 capabilities(client)

 Returns capabilities advertised by the MCP server.

 handshake(transport, opts \\ [])

 Backwards compatible alias for initialize/2.

 initialize(transport, opts \\ [])

 Performs MCP initialization against the given transport.

 list_prompts(client, opts \\ [])

 Lists available prompts via prompts/list.

 list_resources(client, opts \\ [])

 Lists available resources via resources/list.

 list_tools(client, opts \\ [])

 Lists available tools, applying allow/block filters and caching results unless cache?: false
is supplied.

 qualify_tool_name(server_name, tool_name)

 Qualifies a tool name with the server prefix.

 Types

 capabilities()

 @type capabilities() :: %{optional(String.t()) => term()}

 t()

 @type t() :: %Codex.MCP.Client{
 capabilities: capabilities(),
 instructions: String.t() | nil,
 protocol_version: String.t() | nil,
 server_info: map() | nil,
 server_name: String.t() | nil,
 tool_cache: map(),
 transport: transport_ref()
}

 transport_ref()

 @type transport_ref() :: {module(), term()}

 Functions

 call_tool(client, tool, args, opts \\ [])

 @spec call_tool(t(), String.t(), map() | nil, keyword()) ::
 {:ok, map()} | {:error, term()}

Invokes a tool on the MCP server.
Options
	:retries - Number of retry attempts (default: 3)
	:backoff - Backoff function (attempt -> :ok) (default: exponential backoff)
	:timeout_ms - Request timeout in milliseconds (default: 60000)
	:approval - Approval callback function (tool, args, context) -> :ok | {:deny, reason}

	:context - Tool context map passed to approval callback (default: %{})

Backoff
The default backoff uses exponential delays: 100ms, 200ms, 400ms, 800ms, ... up to 5000ms max.
Provide a custom function to override: backoff: fn attempt -> Process.sleep(attempt * 100) end
Approval Callbacks
Approval callbacks are invoked before the first attempt. They can be:
	A 3-arity function (tool, args, context) -> result
	A 2-arity function (tool, args) -> result
	A 1-arity function (tool) -> result

Where result is one of:
	:ok or any truthy value - Approved
	:deny or false - Denied
	{:deny, reason} - Denied with reason

Telemetry
Emits the following events:
	[:codex, :mcp, :tool_call, :start] - When the call begins
	[:codex, :mcp, :tool_call, :success] - On successful completion
	[:codex, :mcp, :tool_call, :failure] - On failure (after all retries exhausted)

Returns
	{:ok, result} - Tool execution succeeded
	{:error, {:approval_denied, reason}} - Approval callback denied the call
	{:error, reason} - Tool execution failed after all retries

Examples
Basic invocation with defaults
{:ok, result} = Codex.MCP.Client.call_tool(client, "echo", %{"text" => "hello"})

With custom retry and backoff
{:ok, result} = Codex.MCP.Client.call_tool(client, "fetch", %{"url" => url},
 retries: 5,
 backoff: fn attempt -> Process.sleep(attempt * 200) end,
 timeout_ms: 30_000
)

With approval callback
{:ok, result} = Codex.MCP.Client.call_tool(client, "write_file", args,
 approval: fn tool, args, _ctx ->
 if safe_tool?(tool, args), do: :ok, else: {:deny, "unsafe"}
 end
)

 capabilities(client)

 @spec capabilities(t()) :: capabilities()

Returns capabilities advertised by the MCP server.

 handshake(transport, opts \\ [])

 @spec handshake(
 transport_ref(),
 keyword()
) :: {:ok, t()} | {:error, term()}

Backwards compatible alias for initialize/2.

 initialize(transport, opts \\ [])

 @spec initialize(
 transport_ref(),
 keyword()
) :: {:ok, t()} | {:error, term()}

Performs MCP initialization against the given transport.
This sends initialize and then emits the notifications/initialized notification.
Options
	:client - Client name to send during initialization (default: "codex-elixir")
	:client_title - Optional client title for UI display
	:version - Client version (default: "0.0.0")
	:capabilities - Client capability map (default: %{})
	:protocol_version - MCP protocol version (default: 2025-06-18)
	:server_name - Server name for tool name qualification (e.g., "shell")
	:timeout_ms - Timeout for initialization (default: 10000)

 list_prompts(client, opts \\ [])

 @spec list_prompts(
 t(),
 keyword()
) :: {:ok, map()} | {:error, term()}

Lists available prompts via prompts/list.
Options
	:cursor - Pagination cursor (default: nil)
	:timeout_ms - Request timeout (default: 30000)

 list_resources(client, opts \\ [])

 @spec list_resources(
 t(),
 keyword()
) :: {:ok, map()} | {:error, term()}

Lists available resources via resources/list.
Options
	:cursor - Pagination cursor (default: nil)
	:timeout_ms - Request timeout (default: 30000)

 list_tools(client, opts \\ [])

 @spec list_tools(
 t(),
 keyword()
) :: {:ok, [map()], t()} | {:error, term()}

Lists available tools, applying allow/block filters and caching results unless cache?: false
is supplied.
Options
	:cache? - Whether to use cached results (default: true)
	:allow - List of tool names to allow (allowlist filter)
	:deny - List of tool names to deny (blocklist filter)
	:filter - Custom filter function (tool -> boolean)
	:qualify? - Whether to add qualified names with server prefix (default: false)
	:cursor - Pagination cursor (default: nil)
	:timeout_ms - Request timeout (default: 30000)

Returns
	{:ok, tools, updated_client} on success
	{:error, reason} on failure

 qualify_tool_name(server_name, tool_name)

 @spec qualify_tool_name(String.t(), String.t()) :: String.t()

Qualifies a tool name with the server prefix.
Returns the fully qualified name in the format mcp__<server>__<tool>.
If the qualified name exceeds 64 characters, it is truncated and a SHA1
hash suffix is appended to ensure uniqueness.
Examples
iex> Codex.MCP.Client.qualify_tool_name("server1", "tool_a")
"mcp__server1__tool_a"

iex> long_tool = String.duplicate("a", 80)
iex> result = Codex.MCP.Client.qualify_tool_name("srv", long_tool)
iex> String.length(result)
64

Codex.MCP.Config

Helpers for managing MCP server configuration through app-server config APIs.

 Summary

 Types

 connection()

 server_config()

 Functions

 add_server(conn, name, attrs, opts \\ [])

 Adds or replaces an MCP server entry under mcp_servers.<name>.

 list_servers(conn, opts \\ [])

 Lists configured MCP servers from the app-server config.

 remove_server(conn, name, opts \\ [])

 Removes a configured MCP server entry.

 Types

 connection()

 @type connection() :: Codex.AppServer.connection()

 server_config()

 @type server_config() :: map()

 Functions

 add_server(conn, name, attrs, opts \\ [])

 @spec add_server(connection(), String.t(), map() | keyword(), keyword()) ::
 {:ok, map()} | {:error, term()}

Adds or replaces an MCP server entry under mcp_servers.<name>.
The attrs map should include either a stdio launcher (command) or a
streamable HTTP URL (url).

 list_servers(conn, opts \\ [])

 @spec list_servers(
 connection(),
 keyword()
) :: {:ok, map()} | {:error, term()}

Lists configured MCP servers from the app-server config.
Options
	:include_layers - include layered config metadata (passed to config/read)
	:app_server - override the module used for config calls (defaults to Codex.AppServer)

 remove_server(conn, name, opts \\ [])

 @spec remove_server(connection(), String.t(), keyword()) ::
 {:ok, map()} | {:error, term()}

Removes a configured MCP server entry.

Codex.MCP.OAuth

Stores and refreshes OAuth credentials for streamable HTTP MCP servers.

 Summary

 Types

 store_mode()

 Where to store OAuth credentials.

 tokens()

 Stored OAuth credentials for an MCP server.

 Functions

 delete_tokens(server_name, url, store_mode \\ nil)

 Deletes stored OAuth tokens for the given MCP server name and URL.

 load_tokens(server_name, url, store_mode \\ nil)

 Loads OAuth tokens for the given MCP server name and URL.

 refresh_if_needed(tokens, url, opts)

 Refreshes OAuth tokens when they are near expiry.

 save_tokens(tokens, store_mode \\ nil)

 Stores OAuth tokens for the given MCP server name and URL.

 Types

 store_mode()

 @type store_mode() :: :auto | :file | :keyring

Where to store OAuth credentials.

 tokens()

 @type tokens() :: %{
 server_name: String.t(),
 url: String.t(),
 client_id: String.t(),
 access_token: String.t(),
 refresh_token: String.t() | nil,
 expires_at: non_neg_integer() | nil,
 scopes: [String.t()]
}

Stored OAuth credentials for an MCP server.

 Functions

 delete_tokens(server_name, url, store_mode \\ nil)

 @spec delete_tokens(String.t(), String.t(), store_mode() | nil) ::
 :ok | {:error, term()}

Deletes stored OAuth tokens for the given MCP server name and URL.

 load_tokens(server_name, url, store_mode \\ nil)

 @spec load_tokens(String.t(), String.t(), store_mode() | nil) :: tokens() | nil

Loads OAuth tokens for the given MCP server name and URL.
Returns nil when no tokens are stored or the entry cannot be decoded.

 refresh_if_needed(tokens, url, opts)

 @spec refresh_if_needed(tokens() | nil, String.t(), keyword()) ::
 {:ok, tokens() | nil} | {:error, term()}

Refreshes OAuth tokens when they are near expiry.
Returns the original tokens when refresh is not needed or not possible.

 save_tokens(tokens, store_mode \\ nil)

 @spec save_tokens(tokens(), store_mode() | nil) :: :ok | {:error, term()}

Stores OAuth tokens for the given MCP server name and URL.

Codex.MCP.Transport.Stdio

Runs MCP servers over stdio using a managed subprocess.

 Summary

 Types

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 recv(pid, timeout_ms)

 Receives the next JSON-RPC message from the MCP server.

 send(pid, message)

 Sends a JSON-RPC message to the MCP server.

 start_link(opts)

 Starts a stdio transport process.

 Types

 t()

 @type t() :: pid()

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 recv(pid, timeout_ms)

 @spec recv(t(), pos_integer()) :: {:ok, map()} | {:error, term()}

Receives the next JSON-RPC message from the MCP server.

 send(pid, message)

 @spec send(t(), map()) :: :ok | {:error, term()}

Sends a JSON-RPC message to the MCP server.

 start_link(opts)

 @spec start_link(keyword()) :: GenServer.on_start()

Starts a stdio transport process.

Codex.MCP.Transport.StreamableHTTP

Implements MCP JSON-RPC over HTTP with optional bearer or OAuth auth.

 Summary

 Types

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 recv(pid, timeout_ms)

 Receives the next JSON-RPC message from the MCP server.

 send(pid, message)

 Sends a JSON-RPC message to the MCP server.

 start_link(opts)

 Starts a streamable HTTP transport process.

 Types

 t()

 @type t() :: pid()

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 recv(pid, timeout_ms)

 @spec recv(t(), pos_integer()) :: {:ok, map()} | {:error, term()}

Receives the next JSON-RPC message from the MCP server.

 send(pid, message)

 @spec send(t(), map()) :: :ok | {:error, term()}

Sends a JSON-RPC message to the MCP server.

 start_link(opts)

 @spec start_link(keyword()) :: GenServer.on_start()

Starts a streamable HTTP transport process.

Codex.Prompts

Custom prompt discovery and expansion helpers.

 Summary

 Types

 prompt()

 Functions

 expand(prompt, args \\ nil)

 Expands a prompt's content using positional or named arguments.

 list(opts \\ [])

 Lists custom prompts from $CODEX_HOME/prompts (or a provided directory).

 Types

 prompt()

 @type prompt() :: %{
 name: String.t(),
 path: String.t(),
 content: String.t(),
 description: String.t() | nil,
 argument_hint: String.t() | nil
}

 Functions

 expand(prompt, args \\ nil)

 @spec expand(prompt() | map() | String.t(), String.t() | [String.t()] | map() | nil) ::
 {:ok, String.t()} | {:error, map()}

Expands a prompt's content using positional or named arguments.
If the prompt contains named placeholders (e.g. $USER), the args must be
provided as KEY=value pairs. Otherwise positional arguments expand $1..$9
and $ARGUMENTS.

 list(opts \\ [])

 @spec list(keyword()) :: {:ok, [prompt()]}

Lists custom prompts from $CODEX_HOME/prompts (or a provided directory).
Options
	:dir - override prompt directory
	:exclude - list of prompt names to skip

Codex.Skills

Helpers for discovering and loading Codex skills.
Skill discovery is gated by the features.skills flag in configuration.

 Summary

 Types

 connection()

 Functions

 list(conn, opts \\ [])

 Lists skills through the app-server when features.skills is enabled.

 load(skill_or_path, opts \\ [])

 Loads the content of a skill file when features.skills is enabled.

 Types

 connection()

 @type connection() :: Codex.AppServer.connection()

 Functions

 list(conn, opts \\ [])

 @spec list(
 connection(),
 keyword()
) :: {:ok, map()} | {:error, term()}

Lists skills through the app-server when features.skills is enabled.
Returns {:error, :skills_disabled} when the feature flag is off.
Options
	:cwds - working directories to scan (forwarded to skills/list)
	:force_reload - bypass skill cache (forwarded to skills/list)
	:skills_enabled - override feature flag gate
	:config - config map override used for gating
	:codex_home - override CODEX_HOME lookup for gating
	:cwd - override cwd lookup for gating
	:app_server - override module used for app-server calls

 load(skill_or_path, opts \\ [])

 @spec load(
 map() | String.t(),
 keyword()
) :: {:ok, String.t()} | {:error, term()}

Loads the content of a skill file when features.skills is enabled.
Accepts either a skill metadata map (containing path) or a direct path.

Codex.Tool behaviour

Behaviour and helper macros for Codex tool modules.
Tools must implement invoke/2, returning either {:ok, map()} or {:error, term()}.
Optional metadata is surfaced via metadata/0 and merged with registry attributes on
registration.

 Summary

 Callbacks

 invoke(map, map)

 metadata()

 Functions

 metadata(module)

 Returns metadata for a tool module, normalising to a map.

 Callbacks

 invoke(map, map)

 @callback invoke(map(), map()) :: {:ok, map()} | {:error, term()}

 metadata()

 (optional)

 @callback metadata() :: map()

 Functions

 metadata(module)

 @spec metadata(module()) :: map()

Returns metadata for a tool module, normalising to a map.

Codex.Tools

Public API for registering and invoking Codex tools.

 Summary

 Types

 tool_info()

 Functions

 deregister(handle)

 Deregisters a tool using the handle returned from register/2.

 invoke(name, args, context)

 Invokes a registered tool, passing argument and contextual data.

 lookup(name)

 Looks up a registered tool by name.

 metrics()

 Returns a snapshot of accumulated tool invocation metrics keyed by tool name.

 register(module, opts \\ [])

 Registers a tool module with optional overrides.

 reset_metrics()

 Clears all recorded metrics. Primarily used in test setups.

 Types

 tool_info()

 @type tool_info() :: %{name: String.t(), module: module(), metadata: map()}

 Functions

 deregister(handle)

 @spec deregister(Codex.Tools.Handle.t()) :: :ok

Deregisters a tool using the handle returned from register/2.

 invoke(name, args, context)

 @spec invoke(String.t(), map(), map()) :: {:ok, map()} | {:error, term()}

Invokes a registered tool, passing argument and contextual data.

 lookup(name)

 @spec lookup(String.t()) :: {:ok, tool_info()} | {:error, :not_found}

Looks up a registered tool by name.

 metrics()

 @spec metrics() :: %{optional(String.t()) => map()}

Returns a snapshot of accumulated tool invocation metrics keyed by tool name.

 register(module, opts \\ [])

 @spec register(
 module(),
 keyword()
) :: {:ok, Codex.Tools.Handle.t()} | {:error, term()}

Registers a tool module with optional overrides.
Options:
	:name – tool identifier (defaults to metadata name or module name)
	:description – human readable description
	:schema – optional structured output schema metadata

 reset_metrics()

 @spec reset_metrics() :: :ok

Clears all recorded metrics. Primarily used in test setups.

Codex.Tools.Registry

ETS-backed registry that stores Codex tool definitions, tracks invocation telemetry,
and provides lookup/invoke helpers used by the auto-run pipeline.

 Summary

 Functions

 deregister(handle)

 Removes the supplied tool handle from the registry.

 invoke(name, args, context)

 Invokes a registered tool by name, normalising arguments and emitting telemetry around
the attempt. Returns the tool's response or an error tuple.

 lookup(name)

 Looks up a tool by name and returns its metadata and module.

 register(map)

 Registers a tool by name, storing the implementing module and metadata in ETS.
Returns a Codex.Tools.Handle for later deregistration.

 reset!()

 Clears the registry, deleting the underlying ETS table.

 Functions

 deregister(handle)

Removes the supplied tool handle from the registry.

 invoke(name, args, context)

Invokes a registered tool by name, normalising arguments and emitting telemetry around
the attempt. Returns the tool's response or an error tuple.

 lookup(name)

Looks up a tool by name and returns its metadata and module.

 register(map)

Registers a tool by name, storing the implementing module and metadata in ETS.
Returns a Codex.Tools.Handle for later deregistration.

 reset!()

Clears the registry, deleting the underlying ETS table.

Codex.Error exception

Base error struct for Codex failures.
Error Kinds
	:rate_limit - API rate limit exceeded
	:sandbox_assessment_failed - Sandbox assessment failed
	:unknown - Unclassified error

Rate Limit Handling
Rate limit errors may include a retry_after_ms hint extracted from
the API response. Use retry_after_ms/1 to access this value.

 Summary

 Types

 kind()

 t()

 Functions

 new(kind, message, details \\ %{})

 normalize(error)

 Normalizes raw error payloads into %Codex.Error{} structs.

 rate_limit(message, opts \\ [])

 Creates a rate limit error with optional retry-after hint.

 rate_limit?(arg1)

 Checks if error is a rate limit error.

 retry_after_ms(arg1)

 Extracts retry-after hint from error if present.

 Types

 kind()

 @type kind() :: :rate_limit | :sandbox_assessment_failed | :unknown

 t()

 @type t() :: %Codex.Error{
 __exception__: true,
 details: map(),
 kind: kind(),
 message: String.t(),
 retry_after_ms: non_neg_integer() | nil
}

 Functions

 new(kind, message, details \\ %{})

 @spec new(atom(), String.t(), map()) :: t()

 normalize(error)

 @spec normalize(term()) :: t()

Normalizes raw error payloads into %Codex.Error{} structs.
Accepts maps emitted by codex-rs (turn.failed), basic strings, or already
constructed %Codex.Error{} structs. Known codes and types are classified
into stable :kind atoms so callers can branch on error domains (e.g.,
rate limits, sandbox assessment failures).

 rate_limit(message, opts \\ [])

 @spec rate_limit(
 String.t(),
 keyword()
) :: t()

Creates a rate limit error with optional retry-after hint.
Options
	:retry_after_ms - Suggested delay before retry in milliseconds
	:details - Additional error details map

Examples
iex> error = Codex.Error.rate_limit("Rate limit exceeded", retry_after_ms: 30_000)
iex> error.kind
:rate_limit
iex> error.retry_after_ms
30_000

 rate_limit?(arg1)

 @spec rate_limit?(t() | term()) :: boolean()

Checks if error is a rate limit error.
Examples
iex> error = Codex.Error.rate_limit("Rate limited")
iex> Codex.Error.rate_limit?(error)
true
iex> Codex.Error.rate_limit?(%Codex.Error{kind: :unknown, message: "Other"})
false

 retry_after_ms(arg1)

 @spec retry_after_ms(t()) :: non_neg_integer() | nil

Extracts retry-after hint from error if present.
Returns the delay in milliseconds, or nil if not available.
Examples
iex> error = Codex.Error.rate_limit("Rate limited", retry_after_ms: 60_000)
iex> Codex.Error.retry_after_ms(error)
60_000
iex> Codex.Error.retry_after_ms(%Codex.Error{kind: :unknown, message: "Other"})
nil

Codex.TransportError exception

Raised when the codex executable exits unexpectedly.
The retryable? field indicates whether the error is transient and the
operation can be safely retried. This is used by Codex.Retry to determine
whether to attempt automatic retries.

 Summary

 Types

 t()

 Functions

 new(status, opts \\ [])

 Creates a new TransportError.

 retryable_status?(status)

 Determines if an exit status indicates a retryable error.

 Types

 t()

 @type t() :: %Codex.TransportError{
 __exception__: true,
 exit_status: integer(),
 message: String.t(),
 retryable?: boolean(),
 stderr: String.t() | nil
}

 Functions

 new(status, opts \\ [])

 @spec new(
 integer(),
 keyword()
) :: t()

Creates a new TransportError.
Options
	:stderr - Standard error output from the process
	:message - Custom error message
	:retryable? - Whether the error is retryable (default: inferred from exit status)

 retryable_status?(status)

 @spec retryable_status?(integer()) :: boolean()

Determines if an exit status indicates a retryable error.
Retryable statuses include:
	Signal-based exits (128+) for SIGTERM, SIGKILL, SIGPIPE
	Exit code 75 (EX_TEMPFAIL)
	Exit code 69 (EX_UNAVAILABLE)

Codex.GuardrailError exception

Error raised when a guardrail rejects or trips during execution.

 Summary

 Types

 stage()

 type()

 Types

 stage()

 @type stage() :: :input | :output | :tool_input | :tool_output

 type()

 @type type() :: :tripwire | :reject

mix codex.parity

Summarises harvested Python fixtures and highlights gaps.

mix codex.verify

Runs the recommended verification steps (compile, format, test).

 OEBPS/dist/epub-7LKEGYS5.js
(() => {
 // js/helpers.js
 var s = document.querySelector.bind(document), o = document.querySelectorAll.bind(document);
 function r(e) {
 document.readyState !== "loading" ? e() : document.addEventListener("DOMContentLoaded", e);
 }

 // js/makeup.js
 var l = "hll";
 window.addEventListener("exdoc:loaded", t);
 function t() {
 o("[data-group-id]").forEach((e) => {
 e.addEventListener("mouseenter", i), e.addEventListener("mouseleave", i);
 });
 }
 function i(e) {
 let n = e.currentTarget, a = e.type === "mouseenter", c = n.getAttribute("data-group-id");
 n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach((u) => {
 u.classList.toggle(l, a);
 });
 }

 // js/entry/epub.js
 r(() => {
 t();
 });
})();

